二年级奥数经典题及答案-数与形相映(2)

李婷 1172分享

  例6 五面体数,见下图.

  仔细观察可以发现,五面体的每一层的圆点个数都是四角形数,因此五面体数可由几个四角形数相加得到:

  第一个数:1=1

  第二个数:5=1+4

  第三个数:14=1+4+9

  第四个数:30=1+4+9+16

  第五个数:55=1+4+9+16+25.

  例7 按不同的方法对图中的点进行数数与计数,可以得出一系列等式,进而可猜想到一个重要的公式.

  由此可以使人体会到数与形之间的耐人导味的微妙关系.

  方法1:先算空心点,再算实心点:

  22+2×2+1.

  方法2:把点图看作一个整体来算32.

  因为点数不会因计数方法不同而变,所以得出:

  22+2×2+1=32.

  方法1:先算空心点,再算实心点:

  32+2×3+1.

  方法2:把点图看成一个整体来算:42.

  因为点数不会因计数方法不同而变,所以得出:

  32+2×3+1=42.

  方法1:先算空心点,再算实心点:

  42+2×4+1.

  方法2:把点图看成一个整体来算52.

  因为点数不会因计数方法不同而变,所以得出:

  42+2×4+1=52.

  把上面的几个等式连起来看,进一步联想下去,可以猜到一个一般的公式:

  22+2×2+1=32

  32+2×3+1=42

  42+2×4+1=52

  …

  n2+2×n+1=(n+1)2.

  利用这个公式,也可用于速算与巧算.

  如:92+2×9+1=(9+1)2=102=100

  992+2×99+1=(99+1)2

  =1002=10000.

上一篇:没有了
163028