六年级奥数题及答案-抽屉原理、奇偶性问题

布丁 1172分享

  抽屉原理、奇偶性问题是奥数题中非常经常能见到的两种题型,奥数要学会的就是学习方法和解题技巧,慢慢地就会培养起对奥数的兴趣,这样才能把奥数学好。现在我们就一起来欣赏下六年级奥数题吧。

  抽屉原理、奇偶性问题

  1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?

  解:可以把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证有一副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套。这时拿出1副同色的后4个抽屉中还剩3只手套。再根据抽屉原理,只要再摸出2只手套,又能保证有一副手套是同色的,以此类推。

  把四种颜色看做4个抽屉,要保证有3副同色的,先考虑保证有1副就要摸出5只手套。这时拿出1副同色的后,4个抽屉中还剩下3只手套。根据抽屉原理,只要再摸出2只手套,又能保证有1副是同色的。以此类推,要保证有3副同色的,共摸出的手套有:5+2+2=9(只)

  答:最少要摸出9只手套,才能保证有3副同色的。

278973