六年级奥数练习题及答案案解析
奥数对于开拓学生的思维能力,动脑能力有着非常大的帮助,那么六年级的奥数习题是如何的呢?一起来看下吧!希望对大家有所帮助!
一
有人沿公路前进,对面来了一辆汽车,他问司机:“后面有自行车吗?”司机回答:“十分钟前我超过一辆自行车”,这人继续走了十分钟,遇到自行车,已知自行车速度是人步行速度的三倍,问汽车的速度是步行速度的()倍.
分析:人遇见汽车的时候,离自行车的路程是:(汽车速度-自行车速度)×10,这么长的路程要自行车和人合走了10分钟,即:(自行车+步行)×10,等式:(汽车速度-自行车速度)×10=(自行车+步行)×10,即:汽车速度-自行车速度=自行车速度+步行速度.汽车速度=2×自行车速度+步行速度,又自行车的速度是步行的3倍,所以汽车速度是步行的7倍.
解答:(汽车速度-自行车速度)×10=(自行车+步行)×10,
即:汽车速度-自行车速度=自行车速度+步行速度.
汽车速度=2×自行车速度+步行,又自行车的速度是步行的3倍,
所以汽车速度=(2×3+1)×步行速度=步行速度×7.
故答案为:7.
点评:解答此题的关键是要推出:汽车与自行车的速度差等于人与自行车的速度和.
二
兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走1.3米,妹每秒走1.2米,他们第十次相遇时,妹妹还需走()米才能回到出发点.
分析:第十次相遇,妹妹已经走了:30×10÷(1.3+1.2)×1.2=144 (米). 144÷30=4(圈)…24(米). 30-24=6 (米).还要走6米回到出发点.
解答:解:第十次相遇时妹妹已经走的路程:
30×10÷(1.3+1.2)×1.2,
=300÷2.5×1.2,
=144(米).
144÷30=4(圈)…24(米).
30-24=6 (米).
还要走6米回到出发点.
故答案为6米.
点评:此题属于多次相遇问题,关键在于先求出第十次相遇时妹妹已经走的路程.
三
王明从A城步行到B城,同时刘洋从B城骑车到A城,1.2小时后两人相遇.相遇后继续前进,刘洋到A城立即返回,在第一次相遇后45分钟又追上了王明,两人再继续前进,当刘洋到达B城后立即折回.两人第二次相遇后()小时第三次相遇.
分析:由题意知道两人走完一个全程要用1.2小时.从开始到第三次相遇,两人共走完了三个全程,故需3.6小时.第一次相遇用了一小时,第二次相遇用了40分钟,那么第二次到第三次相遇所用的时间是:3.6小时-1.2小时-45分钟据此计算即可解答.
解答:解:45分钟=0.75小时,
从开始到第三次相遇用的时间为:
1.2×3=3.6(小时);
第二次到第三次相遇所用的时间是:
3.6-1.2-0.75
=2.4-0.75,
=1.65(小时);
答:第二次相遇后1.65小时第三次相遇.
故答案为:1.65.
点评:本题主要考查多次相遇问题,解题关键是知道第三次相遇所用的时间.