三年级数列的奥数练习题目
数列是三年级奥数的考试重点,许多同学表示这类型的题目十分难,下面就是小编为大家整理的数列的练习题目,希望对大家有所帮助!
一
斐波那契数列为1,1,2,3,5,8,13,那么数列的第100项与前98项之和的差是多少?
解答:因为第100项等于第99项与第98项之和,所以第100项与前98项之和的差等于第99项与前97项之和的差.同理第99项与前97项之和的差等于第98项与前96项之和的差,……依次类推,可得第100项与前100项之和的差等于第3项与前1项的差,即为第2项,所以第100项与前98项之和的差是.
二
按照数列的变化规律在括号里填上合适的数:3,1,6,2,12,3,24,4,(),()。
【答案解析】第1个数、第3个数、第5个数、第7个数……依次为:3,6,12,24,…又组成一个新的数列,后一个数是前一个数的2倍。因此,第9个数应填48;同样,第2个数、第4个数、第6个数、第8个数……依次为:1,2,3,4,…,也组成一个新的数列,后一个数比前一个数大1。因此,第10个数应填5
三
对于数列4、7、10、13、16、19……,第10项是多少?49是这个数列的第几项?第100项与第50项的差是多少?
【答案解析】可以观察出这个数列是公差是3的等差数列.根据刚刚学过的公式:第n项=首项+公差×(n-1),项数=(末项-首项)÷公差+1,第n项-第m项=公差×(n-m);第10项为:4+3×(10-1)=4+27=31,49在数列中的项数为:(49-4)÷3+1=16,第100项与第50项的差:3×(100-50)=150