小学三年级速算与巧算奥数练习题
奥数对学生起到的并不仅仅是数学方面的作用,通常比普通数学要深奥些。下面小编给大家分享了几道速算与巧算的练习题,一起来看看吧!
减法中的巧算:
1.把几个互为“补数”的减数先加起来,再从被减数中减去。
例3:①300-73-27
②1000-90-80-20-10
解:①式=300-(73+27)
=300-100=200
②式=1000-(90+80+20+10)
=1000-200=800
2.先减去那些与被减数有相同尾数的减数。
例4:①4723-(723+189)
②2356-159-256
解:①式=4723-723-189
=4000-189=3811
②式=2356-256-159
=2100-159
=1941
3.利用“补数”把接近整十、整百、整千…的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。
例5:①506-397
②323-189
③467+997
④987-178-222-390
解:①式=500+6-400+3(把多减的3再加上)
=109
②式=323-200+11(把多减的11再加上)
=123+11=134
③式=467+1000-3(把多加的3再减去)
=1464
④式=987-(178+222)-390
=987-400-400+10=197
加减混合式的巧算:
1.去括号和添括号的法则
在只有加减运算的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,即:
a+(b+c+d)=a+b+c+d
a-(b+a+d)=a-b-c-d
a-(b-c)=a-b+c
例6:①100+(10+20+30)
②100-(10+20+3O)
③100-(30-10)
解:①式=100+10+20+30
=160
②式=100-10-20-30
=40
③式=100-30+10
=80
例7:计算下面各题
①100+10+20+30
②100-10-20-30
③100-30+10
解:①式=100+(10+20+30)
=100+60=160
②式=100-(10+20+30)
=100-60=40
③式=100-(30-10)
=100-20=80
2.带符号“搬家”
例8:计算325+46-125+54
解:原式=325-125+46+54
=(325-125)+(46+54)
=200+100=300
注意:每个数前面的运算符号是这个数的符号.如+46,-125,+54.而325前面虽然没有符号,应看作是+325。
3.两个数相同而符号相反的数可以直接“抵消”掉
例9:计算9+2-9+3
解:原式=9-9+2+3=5
4.找“基准数”法
几个比较接近于某一整数的数相加时,选这个整数为“基准数”。
例10:计算78+76+83+82+77+80+79+85
=640
加法中的巧算:
1.什么叫“补数”?
两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
如:1+9=10,3+7=10,
2+8=10,4+6=10,
5+5=10。
又如:11+89=100,33+67=100,
22+78=100,44+56=100,
55+45=100,
在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。
对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如:87655→12345,46802→53198,
87362→12638,…
下面讲利用“补数”巧算加法,通常称为“凑整法”。
2.互补数先加。
例1:巧算下面各题
①36+87+64②99+136+101
③1361+972+639+28
解:①式=(36+64)+87
=100+87=187
②式=(99+101)+136
=200+136=336
③式=(1361+639)+(972+28)
=2000+1000=3000
3.拆出补数来先加。
例2:①188+873②548+996③9898+203
解:①式=(188+12)+(873-12)(熟练之后,此步可略)
=200+861=1061
②式=(548-4)+(996+4)
=544+1000=1544
③式=(9898+102)+(203-102)
=10000+101=10101
4.竖式运算中互补数先加。
拆数补数:
练习题:
拆数补数
①188+873②548+996③9898+203
答案与解析:
①式=(188+12)+(873-12)(熟练之后,此步可略)
=200+861=1061
②式=(548-4)+(996+4)
=544+1000=1544
③式=(9898+102)+(203-102)
=10000+101=10101
高斯求和:
计算:100+99-98+97-96+…+3-2+1
答案与解析:
原式=100+(99-98)+(97-96)+…+(3-2)+1
=100+1×49+1
=100+49+1
=150