奥数四年级题目及答案:二次相遇问题
二次相遇问题是四年级奥数学习中的一个专题训练,相关的习题是如何的呢?一起来看看吧!希望对大家有所帮助!
文章一
1.AB两地相距360千米,客车与货车从A、B两地相向而行,客车先行1小时,货车才开出,客车每小时行60千米,货车每小时行40千米,客车开出后几小时与货车相遇?相遇地点距B地多远
分析:由题意可知:客车先行1小时,货车才开出,先求出剩下的路程,再根据路程÷速度和=相遇时间,求出相遇时间再加上1小时即可,然后用总路程减去客车4小时行驶的路程问题即可得到解决.
解答:解:相遇时间:
(360-60)÷(60+40)+1,
=300÷100+1,
=3+1,
=4(小时),
360-60×4,
=360-240,
=120(千米),
答:客车开出后4小时与货车相遇,相遇地点距B地120千米.
文章二
甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,A、B之间的距离是多少?
解答:
【分析】甲、乙两车共同走完一个AB全程时,乙车走了64千米,从上图可以看出:它们到第二次相遇时共走了3个AB全程,因此,我们可以理解为乙车共走了3个64千米,再由上图可知:减去一个48千米后,正好等于一个AB全程.AB间的距离是64×3-48=144(千米)
文章三
一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行.这两只蚂蚁每秒分别爬行5.5厘米和3.5厘米.它们每爬行1秒,3秒,5秒…(连续的奇数),就调头爬行.那么,它们相遇时已爬行的时间是多少秒?
分析:
道题难在蚂蚁爬行的方向不断地发生变化,那么如果这两只蚂蚁都不调头爬行,相遇时它们已经爬行了多长时间呢?非常简单,由于半圆周长为:1.26÷2=0.63米=63厘米,所以可列式为:1.26÷2÷(5.5+3.5)=7(秒);我们发现蚂蚁爬行方向的变化是有规律可循的,它们每爬行1秒、3秒、5秒、…(连续的奇数)就调头爬行.每只蚂蚁先向前爬1秒,然后调头爬3秒,再调头爬5秒,这时相当于在向前爬1秒的基础上又向前爬行了2秒;同理,接着向后爬7秒,再向前爬9秒,再向后爬11秒,再向前爬13秒,这就相当于一共向前爬行了1+2+2+2=7(秒),正好相遇.