四年级奥数的习题及解析
奥数的题目能够提高学生的思维能力,培养学生的动脑能力,那么四年级的奥数题目是如何的呢?一起来看看吧!
习题一
学校提高班的同学去划船,他们算了一下,如果增加一条船。正好每条船坐6人;如果减少一条船,正好每条船坐9人。问这个班共有多少同学?
答案与解析:先增加一条船,正好每条船坐6人,然后去掉两条船,就会余下12名同学,改为每船正好坐9人,即每条船增加3人正好把余下的12名同学全部安排上去,所以现在还有:
12÷3=4(条)船,而全班同学的人数为9×4=36(人)。
习题二
有一根长为180厘米的绳子,从一端开始每隔3厘米作一个记号,每隔4厘米也作一个记号,然后将标有记号的地方剪断。问绳子共被剪成了多少段。
答案与解析:1-180中,3的倍数有60个,4的倍数有45个,而既是3的倍数又是4的倍数的数一定是12的倍数,这样的数有180÷12=15个。注意到180厘米处无法标上记号,所以标记记号有:(60-1)+(45-1)-(15-1)=89,绳子被剪成90段。
习题三
明明家是养兔专业户。一天,明明第一次称3只大兔和4只小兔,共重6.5千克;第二次称4只大兔和3只小兔,共重7.5千克。假定大兔的重量都一样,小兔的重量也都一样。小朋友,你能很快地口算出每只大兔和每只小兔各重多少千克吗?
答案与解析:如果第一次去掉一只小兔,换上一只大兔,那就和第二次称重的情况一样,可见一只大兔比一只小兔重:7.5-6.5=1(千克)。如果把第一次称时的大兔全部换成小兔,重量就要减去3千克,这时7只小兔的重量是:6.5-3=3.5(千克),那么每只小兔的重量便是0.5千克。
根据同样的道理,把第二次称重时的小兔全部换成大兔,就要增加3千克,得10.5千克,即7只大兔共重10.5千克,那么每只大兔重量便是1.5千克。
答:每只大兔重1.5千克,每只小兔重0.5千克。