五年级下册数学复习资料整理
五年级数学下学期考试即将到来,同学们复习的资料都准备好了么?下面就是小编为大家整理的五年级复习资料的跪安,希望对大家有所帮助!
第一部分
一、观察物体
1、从不同的位置(或同一位置)观察物体,看到的形状可能相同也可能不同;从同一位置观察长方体或正方体时不能看到所有的面,最多只能看到三个面,最少看到一个面。
2、正面、侧面(左面,右面)、后面都是相对的,它是随着观察角度的变化而变化。通过观察、想象、猜测,培养空间想象力和思维能力,能正确辨认从正面、侧面、上面观察到的简单物体的形状。
3、观察物体,从实物观察到对立体图形的观察有一个体验、认识、提高的过程,多观察物体,多画观察到的图形,自己制作立体图形,有意识的训练想象能力,逐渐就会观察立体图形了。
4、观察物体,先要确定观察的位置(方向)(常选择上面、正面、左侧面、右侧面),再确定观察的形状,并把它画下来,在平面图形画上斜线。
5、根据各个位置看到的平面图形推算共有几个小正方体方法:从正面看数层数,从下往上数;从上面看数列数,从左往右数;从左面看数排数,前排在右后排在左,从右往左数。
6、至少用8个正方体可拼成较大的正方体,27个64个125个。。。都可拼成较大正方体。
二、图形的运动
图形变换的基本方式是对称、平移和旋转。
对称点是关于一条直线对称的点 (对称点一般用于轴对称), 对应点是一个图形经变换后的图形与变换前的图形位置相同的点(对应点一般用于平移和旋转)
(一)图形的平移
1、平移不改变图形的大小和形状。
2、平移的三要素:原图形的位置、平移的方向、平移的距离。平移的方向一般为:水平方向、垂直方向两种。平移的距离:一般为几个单位长度(也即几个方格)
3、平移是整个图形的移动,图形的每个关键点都需要按要求移动。
4、把图形平移的步骤:
(1)确定原图形位置、平移的方向、平移的距离。
(2)找出原图形的各关键点。
(3)根据题目要求将各个点依次平移。
(4)顺次连接平移后的各点,标明各点名称。
(二)轴对称: 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
(1)学过的轴对称平面图形有:圆形、长方形、正方形、圆形、等腰三角形、等边三角形、等腰梯形……
等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,圆有无数条对称轴。任意梯形和平行四边形不是轴对称图形。
(2)对称点到对称轴的距离相等。
(3)轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小、形状完全相同,方向相反。
(4)对称图形包括轴对称图形和中心对称图形。平行四边形(除棱形)属于中心对称图形。
2、旋转:物体或图形围绕一个定点沿着一个方向转动一定的角度的现象叫做旋转。如风扇的叶片旋转。定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。
(1)生活中的旋转:电风扇、车轮、纸风车
(2)旋转三要素:①旋转中心,固定不变;②旋转方向有顺时针、逆时针;③旋转角度有:常见的有30°、45°、60°90°、180°、270°。
(3)长方形绕中心点旋转180度与原来重合,正方形绕中心点旋转90度与原来重合。等边三角形绕中点旋转120度与原来重合。
(4)旋转的性质:
①图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;②其中对应点到旋转中心的距离相等;旋转前后图形的大小和形状没有改变,位置和方向发生改变,旋转中心是唯一不动的点,③两组对应点分别与旋转中心的连线所成的角度相等,都等于旋转角;
(5)怎样画图形旋转的形状:(1)先观察原图形的形状特征找准关键点,(2)找准旋转中心、旋转方向、旋转角度 ;
(3)使用直角三角板的顶点与旋转中心重合,则该图形旋转后的形状就在三角板另一条边上;
(4)确定各对应点的长度,用虚线标出来;(5)将每个对应点连接并标出名称。
三 、 长方体和正方体
1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。(长宽高是相对而言的,随观察角度而定)
长方体特点:
(1)长方体有6个面,8个顶点,12条棱,相对的面完全相同,相对的面面积相等,相对的棱长度相等。
(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
正方体特点:(1)正方体有12条棱,它们的长度都相等。(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。(3)正方体可以看做长、宽、高都相等的长方体,它是一种特殊的长方体。
长方体与正方体的异同:
相同点 不同点
面 棱
长方体 都有6个面,
12条棱,
8个顶点。 6个面都是长方形。
(有可能有两个相对的面是正方形)。 相对的棱的长度都相等
正方体 6个面都是正方形。 12条棱都相等。