5068教学资源网 > 学习宝典 > 高考 > 高考考点 > 数学 > 高一数学下册知识点总结

高一数学下册知识点总结

文浩20分享

高一数学下册知识点总结归纳

高中学习方法其实很简单,但是这个方法要一直保持下去,才能在最终考试时看到成效。下面是小编为大家精心整理的高一数学下册知识点总结,欢迎阅读,希望对大家有所帮助。

高一数学下册知识点总结

高一数学下册知识点总结

圆的方程定义:

圆的标准方程(x-a)2+(y-b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。

直线和圆的位置关系:

1.直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系.

①Δ>0,直线和圆相交.②Δ=0,直线和圆相切.③Δ<0,直线和圆相离.

方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较.

①dR,直线和圆相离.

2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况.

3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题.

切线的性质

⑴圆心到切线的距离等于圆的半径;

⑵过切点的半径垂直于切线;

⑶经过圆心,与切线垂直的直线必经过切点;

⑷经过切点,与切线垂直的直线必经过圆心;

当一条直线满足

(1)过圆心;

(2)过切点;

(3)垂直于切线三个性质中的两个时,第三个性质也满足.

切线的判定定理

经过半径的外端点并且垂直于这条半径的直线是圆的切线.

切线长定理

从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.

高一数学下册知识点汇总

1、集合的概念

集合是集合论中的不定义的原始概念,教材中对集合的概念进行了描述性说明:“一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)”。理解这句话,应该把握4个关键词:对象、确定的、不同的、整体。

对象――即集合中的元素。集合是由它的元素确定的。

整体――集合不是研究某一单一对象的,它关注的是这些对象的全体。

确定的――集合元素的确定性――元素与集合的“从属”关系。

不同的――集合元素的互异性。

2、有限集、无限集、空集的意义

有限集和无限集是针对非空集合来说的。我们理解起来并不困难。

我们把不含有任何元素的集合叫做空集,记做Φ。理解它时不妨思考一下“0与Φ”及“Φ与{Φ}”的关系。

几个常用数集N、N_、N+、Z、Q、R要记牢。

3、集合的表示方法

(1)列举法的表示形式比较容易掌握,并不是所有的集合都能用列举法表示,同学们需要知道能用列举法表示的三种集合:

①元素不太多的有限集,如{0,1,8}

②元素较多但呈现一定的规律的有限集,如{1,2,3,…,100}

③呈现一定规律的无限集,如{1,2,3,…,n,…}

●注意a与{a}的区别

●注意用列举法表示集合时,集合元素的“无序性”。

(2)特征性质描述法的关键是把所研究的集合的“特征性质”找准,然后适当地表示出来就行了。但关键点也是难点。学习时多加练习就可以了。另外,弄清“代表元素”也是非常重要的。如{x|y=x2},{y|y=x2},{(x,y)|y=x2}是三个不同的集合。

4、集合之间的关系

●注意区分“从属”关系与“包含”关系

“从属”关系是元素与集合之间的关系。

“包含”关系是集合与集合之间的关系。掌握子集、真子集的概念,掌握集合相等的概念,学会正确使用“”等符号,会用Venn图描述集合之间的关系是基本要求。

●注意辨清Φ与{Φ}两种关系。

高一数学下册知识点梳理

1.函数的奇偶性。

(1)若f(x)是偶函数,那么f(x)=f(-x)。

(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数)。

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0)。

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性。

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性。

2.复合函数的有关问题。

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定。

3.函数图像(或方程曲线的对称性)。

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上。

(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然。

(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。

(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0。

(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称。

4.函数的周期性。

(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数。

(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数。

(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数。

(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数。

5.判断对应是否为映射时,抓住两点。

(1)A中元素必须都有象且。

(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象。

6.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

7.对于反函数,应掌握以下一些结论。

(1)定义域上的单调函数必有反函数。

(2)奇函数的反函数也是奇函数。

(3)定义域为非单元素集的偶函数不存在反函数。

(4)周期函数不存在反函数。

(5)互为反函数的两个函数具有相同的单调性。

(6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A)。

8.处理二次函数的问题勿忘数形结合。

二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系。

9.依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题。

10.恒成立问题的处理方法。

(1)分离参数法。

(2)转化为一元二次方程的根的分布列不等式(组)求解。

高一年级数学下册知识点总结相关文章:

高一年级数学知识点总结必考点和常考点

高一下册数学必修一知识点梳理

高一数学常用知识点

高一下学期数学期末全新知识点归纳

高一下册数学必修一考生必读知识点梳理

高一年级数学必修1知识点整理

高一数学知识点关键内容整理

高一数学总复习资料必看

高一的部分数学知识点总结

人教版高一数学下册知识点最新高考考点

    133276