2023高考数学知识点大全归纳
2023高考数学知识点大全归纳总结
知识点也不一定都是文字,比如数学的知识点除了定义,同样重要的公式也可以理解为知识点。以下是小编准备的2023高考数学知识点大全归纳,欢迎借鉴参考。
高考常用数学公式
三倍角公式
三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]
三倍角公式推导
附推导:
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
上下同除以cos^3(α),得:
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos^2(α)+(1-2sin^2(α))sinα
=2sinα-2sin^3(α)+sinα-2sin^3(α)
=3sinα-4sin^3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα
即
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
三倍角公式联想记忆
记忆方法:谐音、联想
正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))
余弦三倍角:4元3角 减 3元(减完之后还有“余”)
☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。
另外的记忆方法:
正弦三倍角: 山无司令 (谐音为 三无四立) 三指的是"3倍"sinα, 无指的是减号, 四指的是"4倍", 立指的是sinα立方
余弦三倍角: 司令无山 与上同理
和差化积公式
三角函数的和差化积公式
sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
积化和差公式
三角函数的积化和差公式
sinα·cosβ=0.5[sin(α+β)+sin(α-β)]
cosα·sinβ=0.5[sin(α+β)-sin(α-β)]
cosα·cosβ=0.5[cos(α+β)+cos(α-β)]
sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]
和差化积公式推导
附推导:
首先,我们知道sin(a+b)=sina__cosb+cosa__sinb,sin(a-b)=sina__cosb-cosa__sinb
我们把两式相加就得到sin(a+b)+sin(a-b)=2sina__cosb
所以,sina__cosb=(sin(a+b)+sin(a-b))/2
同理,若把两式相减,就得到cosa__sinb=(sin(a+b)-sin(a-b))/2
同样的,我们还知道cos(a+b)=cosa__cosb-sina__sinb,cos(a-b)=cosa__cosb+sina__sinb
所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa__cosb
所以我们就得到,cosa__cosb=(cos(a+b)+cos(a-b))/2
同理,两式相减我们就得到sina__sinb=-(cos(a+b)-cos(a-b))/2
这样,我们就得到了积化和差的四个公式:
sina__cosb=(sin(a+b)+sin(a-b))/2
cosa__sinb=(sin(a+b)-sin(a-b))/2
cosa__cosb=(cos(a+b)+cos(a-b))/2
sina__sinb=-(cos(a+b)-cos(a-b))/2
有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式。
我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2
把a,b分别用x,y表示就可以得到和差化积的四个公式:
sinx+siny=2sin((x+y)/2)__cos((x-y)/2)
sinx-siny=2cos((x+y)/2)__sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)__cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)__sin((x-y)/2)
高考数学易错题总结
遗忘空集致误
由于空集是任何非空集合的真子集,因此B=∅时也满足B⊆A。解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况。
忽视集合元素的三性致误
集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
混淆命题的否定与否命题
命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。
充分条件、必要条件颠倒致误
对于两个条件A,B,如果A⇒B成立,则A是B的充分条件,B是A的必要条件;如果B⇒A成立,则A是B的必要条件,B是A的充分条件;如果A⇔B,则A,B互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断。
“或”“且”“非”理解不准致误
命题p∨q真⇔p真或q真,命题p∨q假⇔p假且q假(概括为一真即真);命题p∧q真⇔p真且q真,命题p∧q假⇔p假或q假(概括为一假即假);綈p真⇔p假,綈p假⇔p真(概括为一真一假)。求参数取值范围的题目,也可以把“或”“且”“非”与集合的“并”“交”“补”对应起来进行理解,通过集合的运算求解。
函数的单调区间理解不准致误
在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法。对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
判断函数奇偶性忽略定义域致误
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。
函数零点定理使用不当致误
如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题。
三角函数的`单调性判断致误
对于函数y=Asin(ωx+φ)的单调性,当ω>0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω<0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sinx的单调性相反,就不能再按照函数y=sinx的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决。对于带有绝对值的三角函数应该根据图像,从直观上进行判断。
忽视零向量致误
零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线。它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视。
向量夹角范围不清致误
解题时要全面考虑问题。数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b<0时,a与b的夹角不一定为钝角,要注意θ=π的情况。
an与Sn关系不清致误
在数列问题中,数列的通项an与其前n项和Sn之间存在下列关系:an=S1,n=1,Sn-Sn-1,n≥2。这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。
对数列的定义、性质理解错误
等差数列的前n项和在公差不为零时是关于n的常数项为零的二次函数;一般地,有结论“若数列{an}的前n项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N__)是等差数列。
数列中的最值错误
数列问题中其通项公式、前n项和公式都是关于正整数n的函数,要善于从函数的观点认识和理解数列问题。数列的通项an与前n项和Sn的关系是高考的命题重点,解题时要注意把n=1和n≥2分开讨论,再看能不能统一。在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴的远近而定。
错位相减求和项处理不当致误
错位相减求和法的适用条件:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和。基本方法是设这个和式为Sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,就把问题转化为以求一个等比数列的前n项和或前n-1项和为主的求和问题.这里最容易出现问题的就是错位相减后对剩余项的处理。
不等式性质应用不当致误
在使用不等式的基本性质进行推理论证时一定要准确,特别是不等式两端同时乘以或同时除以一个数式、两个不等式相乘、一个不等式两端同时n次方时,一定要注意使其能够这样做的条件,如果忽视了不等式性质成立的前提条件就会出现错误。
忽视基本不等式应用条件致误
利用基本不等式a+b≥2ab以及变式ab≤a+b22等求函数的最值时,务必注意a,b为正数(或a,b非负),ab或a+b其中之一应是定值,特别要注意等号成立的条件。对形如y=ax+bx(a,b>0)的函数,在应用基本不等式求函数最值时,一定要注意ax,bx的符号,必要时要进行分类讨论,另外要注意自变量x的取值范围,在此范围内等号能否取到。
高考数学知识点总结
一、集合与函数
1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。
2.在应用条件时,易A忽略是空集的情况
3.你会用补集的思想解决有关问题吗?
4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?
5.你知道“否命题”与“命题的否定形式”的区别。
6.求解与函数有关的问题易忽略定义域优先的原则。
7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。
8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。
9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。例如:。
10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值, 作差, 判正负)和导数法
11. 求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。
12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?
①比较函数值的大小;
②解抽象函数不等式;
③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?
14.解对数函数问题时,你注意到真数与底数的限制条件了吗?
(真数大于零,底数大于零且不等于1)字母底数还需讨论
15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?
16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?
二、不等式
1.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.
2.绝对值不等式的解法及其几何意义是什么?
3.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?
4.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.
5. 在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。
6. 两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a
三、数列
1.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?
2.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
3.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?
4.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)
5.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
四、三角函数
1.正角、负角、零角、象限角的概念你清楚吗,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?
2.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?
3. 在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?
4. 你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角。 异角化同角,异名化同名,高次化低次)
5. 反正弦、反余弦、反正切函数的取值范围分别是
6.你还记得某些特殊角的三角函数值吗?
7.掌握正弦函数、余弦函数及正切函数的图象和性质。你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?
五、平面向量
1..数0有区别,的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量平行,但与任意向量都不垂直。
2..数量积与两个实数乘积的区别:
在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出。
已知实数,且,则a=c,但在向量的数量积中没有。
在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量。
3.是向量与平行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。
六、解析几何
1.在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?
2.用到角公式时,易将直线l1、l2的斜率k1、k2的顺序弄颠倒。
3.直线的倾斜角、到的角、与的夹角的取值范围依次是。
4. 定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你注意到了吗?
5. 对不重合的两条直线
(建议在解题时,讨论后利用斜率和截距)
6. 直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。
7.解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达。
①设出变量,写出目标函数
②写出线性约束条件
③画出可行域
④作出目标函数对应的系列平行线,找到并求出最优解
8.三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?
9.圆、和椭圆的参数方程是怎样的?常用参数方程的方法解决哪一些问题?
10.利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序?如何利用第二定义推出圆锥曲线的焦半径公式?如何应用焦半径公式?
11. 通径是抛物线的所有焦点弦中最短的弦。(想一想在双曲线中的结论?)
12. 在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制。(求交点,弦长,中点,斜率,对称,存在性问题都在下进行).
13.解析几何问题的求解中,平面几何知识利用了吗?题目中是否已经有坐标系了,是否需要建立直角坐标系?
七、立体几何
1.你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。
2.线面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?
3.三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见
4.线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为”一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”而导致证明过程跨步太大。
5.求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法。
6.异面直线所成角利用“平移法”求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。
7.你知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗?
8. 两条异面直线所成的角的范围:0°<α≤90°< p="">
直线与平面所成的角的范围:0o≤α≤90°