最新高考数学必考公式归纳_高考数学知识点
推荐文章
最新高考数学必考公式归纳_高考数学知识点总结
相信很多的同学都是非常的关心高考数学有哪些必考的知识点的,那么一起来看看吧,以下是小编整理的一些最新高考数学必考公式归纳_高考数学知识点,仅供参考。
高考数学必考知识点
1、圆柱体:
表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:
表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,
3、正方体
a-边长,S=6a2,V=a3
4、长方体
a-长,b-宽,c-高S=2(ab+ac+bc)V=abc
5、棱柱
S-底面积h-高V=Sh
6、棱锥
S-底面积h-高V=Sh/3
7、棱台
S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3
8、拟柱体
S1-上底面积,S2-下底面积,S0-中截面积
h-高,V=h(S1+S2+4S0)/6
9、圆柱
r-底半径,h-高,C—底面周长
S底—底面积,S侧—侧面积,S表—表面积C=2πr
S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圆柱
R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)
11、直圆锥
r-底半径h-高V=πr^2h/3
12、圆台
r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3
13、球
r-半径d-直径V=4/3πr^3=πd^3/6
14、球缺
h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3
15、球台
r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6
16、圆环体
R-环体半径D-环体直径r-环体截面半径d-环体截面直径
V=2π2Rr2=π2Dd2/4
17、桶状体
D-桶腹直径d-桶底直径h-桶高
V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)
2高考数学必考公式知识点
1.适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。注上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2.函数的周期性问题(记忆三个):
(1)若f(x)=-f(x+k),则T=2k;
(2)若f(x)=m/(x+k)(m不为0),则T=2k;
(3)若f(x)=f(x+k)+f(x-k),则T=6k。注意点:a.周期函数,
周期必无限b.周期函数未必存在最小周期,如:常数函数。c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3.关于对称问题(无数人搞不懂的问题)总结如下:
(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2
(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称
(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称
4.函数奇偶性:
(1)对于属于R上的奇函数有f(0)=0
(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项
(3)奇偶性作用不大,一般用于选择填空
5.数列爆强定律:
1.等差数列中:S奇=na中,例如S 13 =13a 7
2.等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差
3.等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立
4.等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q
6.数列的终极利器,特征根方程。(如果看不懂就算了)。
首先介绍公式:对于a n+1 =pa n +q,a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数)
7.函数详解补充:
(1)复合函数奇偶性:内偶则偶,内奇同外
(2)复合函数单调性:同增异减
(3)重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。
8.常用数列bn=n×(2²n)求和Sn=(n-1)×(2²(n+1))+2记忆方法
前面减去一个1,后面加一个,再整体加一个2
9.适用于标准方程(焦点在x轴)爆强公式
k椭=-{(b²)xo}/{(a²)yo}k双={(b²)xo}/{(a²)yo}k抛=p/yo
注:(xo,yo)均为直线过圆锥曲线所截段的中点。
10.强烈推荐一个两直线垂直或平行的必杀技
已知直线L1:a1x+b1y+c1=0 直线L2:a2x+b2y+c2=0
若它们垂直:(充要条件)a1a2+b1b2=0;
若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了防止两直线重合)
注:以上两公式避免了斜率是否存在的麻烦,直接必杀!
高中数学有哪些必备知识点
1.对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
中元素各表示什么?
注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
3.注意下列性质:
(3)德摩根定律:
4.你会用补集思想解决问题吗?(排除法、间接法)
的取值范围。
6.命题的四种形式及其相互关系是什么?
(互为逆否关系的命题是等价命题。)
原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7.对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?
(一对一,多对一,允许B中有元素无原象。)
8.函数的三要素是什么?如何比较两个函数是否相同?
(定义域、对应法则、值域)
9.求函数的定义域有哪些常见类型?
10.如何求复合函数的定义域?
义域是_____________。
11.求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?
12.反函数存在的条件是什么?
(一一对应函数)
求反函数的步骤掌握了吗?
(①反解x;②互换x、y;③注明定义域)
13.反函数的性质有哪些?
①互为反函数的图象关于直线y=x对称;
②保存了原来函数的单调性、奇函数性;
14.如何用定义证明函数的单调性?
(取值、作差、判正负)
如何判断复合函数的单调性?
∴……)
15.如何利用导数判断函数的单调性?
值是()
A.0B.1C.2D.3
∴a的最大值为3)
16.函数f(x)具有奇偶性的必要(非充分)条件是什么?
(f(x)定义域关于原点对称)
注意如下结论:
(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。
17.你熟悉周期函数的定义吗?
函数,T是一个周期。)
如:
18.你掌握常用的图象变换了吗?
注意如下“翻折”变换:
19.你熟练掌握常用函数的图象和性质了吗?
的双曲线。
应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程
②求闭区间[m,n]上的最值。
③求区间定(动),对称轴动(定)的最值问题。
④一元二次方程根的分布问题。
由图象记性质!(注意底数的限定!)
利用它的单调性求最值与利用均值不等式求最值的区别是什么?
20.你在基本运算上常出现错误吗?
21.如何解抽象函数问题?
(赋值法、结构变换法)
22.掌握求函数值域的常用方法了吗?
(二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。)
如求下列函数的最值:
23.你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?
24.熟记三角函数的定义,单位圆中三角函数线的定义
25.你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗?
(x,y)作图象。
27.在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。
28.在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗?
29.熟练掌握三角函数图象变换了吗?
(平移变换、伸缩变换)
平移公式:
图象?
30.熟练掌握同角三角函数关系和诱导公式了吗?
“奇”、“偶”指k取奇、偶数。
A.正值或负值B.负值C.非负值D.正值
31.熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗?
理解公式之间的联系:
应用以上公式对三角函数式化简。(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。)
具体方法:
(2)名的变换:化弦或化切
(3)次数的变换:升、降幂公式
(4)形的变换:统一函数形式,注意运用代数运算。
32.正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?
(应用:已知两边一夹角求第三边;已知三边求角。)
33.用反三角函数表示角时要注意角的范围。
34.不等式的性质有哪些?
答案:C
35.利用均值不等式:
值?(一正、二定、三相等)
注意如下结论:
36.不等式证明的基本方法都掌握了吗?
(比较法、分析法、综合法、数学归纳法等)
并注意简单放缩法的应用。
(移项通分,分子分母因式分解,x的系数变为1,穿轴法解得结果。)
38.用“穿轴法”解高次不等式——“奇穿,偶切”,从最大根的右上方开始
39.解含有参数的不等式要注意对字母参数的讨论
40.对含有两个绝对值的不等式如何去解?
(找零点,分段讨论,去掉绝对值符号,最后取各段的并集。)
证明:
(按不等号方向放缩)
42.不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或“△”问题)
43.等差数列的定义与性质
0的二次函数)
项,即:
44.等比数列的定义与性质
46.你熟悉求数列通项公式的常用方法吗?
例如:(1)求差(商)法
解:
[练习]
(2)叠乘法
解:
(3)等差型递推公式
[练习]
(4)等比型递推公式
[练习]
(5)倒数法
47.你熟悉求数列前n项和的常用方法吗?
例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。
解:
[练习]
(2)错位相减法:
(3)倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。
[练习]
48.你知道储蓄、贷款问题吗?
△零存整取储蓄(单利)本利和计算模型:
若每期存入本金p元,每期利率为r,n期后,本利和为:
△若按复利,如贷款问题——按揭贷款的每期还款计算模型(按揭贷款——分期等额归还本息的借款种类)
若贷款(向银行借款)p元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,第n次还清。如果每期利率为r(按复利),那么每期应还x元,满足
p——贷款数,r——利率,n——还款期数
49.解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。
(2)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一
(3)组合:从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n个不
50.解排列与组合问题的规律是:
相邻问题捆绑法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采用隔板法,数量不大时可以逐一排出结果。
如:学号为1,2,3,4的四名学生的考试成绩
则这四位同学考试成绩的所有可能情况是()
A.24B.15C.12D.10
解析:可分成两类:
(2)中间两个分数相等
相同两数分别取90,91,92,对应的排列可以数出来,分别有3,4,3种,∴有10种。
∴共有5+10=15(种)情况
51.二项式定理
性质:
(3)最值:n为偶数时,n+1为奇数,中间一项的二项式系数最大且为第
表示)
52.你对随机事件之间的关系熟悉吗?
的和(并)。
(5)互斥事件(互不相容事件):“A与B不能同时发生”叫做A、B互斥。
(6)对立事件(互逆事件):
(7)独立事件:A发生与否对B发生的概率没有影响,这样的两个事件叫做相互独立事件。
53.对某一事件概率的求法:
分清所求的是:(1)等可能事件的概率(常采用排列组合的方法,即
(5)如果在一次试验中A发生的概率是p,那么在n次独立重复试验中A恰好发生
如:设10件产品中有4件次品,6件正品,求下列事件的概率。
(1)从中任取2件都是次品;
(2)从中任取5件恰有2件次品;
(3)从中有放回地任取3件至少有2件次品;
解析:有放回地抽取3次(每次抽1件),∴n=103
而至少有2件次品为“恰有2次品”和“三件都是次品”
(4)从中依次取5件恰有2件次品。
解析:∵一件一件抽取(有顺序)
分清(1)、(2)是组合问题,(3)是可重复排列问题,(4)是无重复排列问题。
54.抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。
55.对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。
要熟悉样本频率直方图的作法:
(2)决定组距和组数;
(3)决定分点;
(4)列频率分布表;
(5)画频率直方图。
如:从10名女生与5名男生中选6名学生参加比赛,如果按性别分层随机抽样,则组成此参赛队的概率为____________。
56.你对向量的有关概念清楚吗?
(1)向量——既有大小又有方向的量。
在此规定下向量可以在平面(或空间)平行移动而不改变。
(6)并线向量(平行向量)——方向相同或相反的向量。
规定零向量与任意向量平行。
(7)向量的加、减法如图:
(8)平面向量基本定理(向量的分解定理)
的一组基底。
(9)向量的坐标表示
表示。
57.平面向量的数量积
数量积的几何意义:
(2)数量积的运算法则
[练习]
答案:
答案:2
答案:
58.线段的定比分点
※.你能分清三角形的重心、垂心、外心、内心及其性质吗?
59.立体几何中平行、垂直关系证明的思路清楚吗?
平行垂直的证明主要利用线面关系的转化:
线面平行的判定:
线面平行的性质:
三垂线定理(及逆定理):
线面垂直:
面面垂直:
60.三类角的定义及求法
(1)异面直线所成的角θ,0°<θ≤90°
(2)直线与平面所成的角θ,0°≤θ≤90°
(三垂线定理法:A∈α作或证AB⊥β于B,作BO⊥棱于O,连AO,则AO⊥棱l,∴∠AOB为所求。)
三类角的求法:
①找出或作出有关的角。
②证明其符合定义,并指出所求作的角。
③计算大小(解直角三角形,或用余弦定理)。
[练习]
(1)如图,OA为α的斜线OB为其在α内射影,OC为α内过O点任一直线。
(2)如图,正四棱柱ABCD—A1B1C1D1中对角线BD1=8,BD1与侧面B1BCC1所成的为30°。
①求BD1和底面ABCD所成的角;
②求异面直线BD1和AD所成的角;
③求二面角C1—BD1—B1的大小。
(3)如图ABCD为菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB与面PCD所成的锐二面角的大小。
(∵AB∥DC,P为面PAB与面PCD的公共点,作PF∥AB,则PF为面PCD与面PAB的交线……)
61.空间有几种距离?如何求距离?
点与点,点与线,点与面,线与线,线与面,面与面间距离。
将空间距离转化为两点的距离,构造三角形,解三角形求线段的长(如:三垂线定理法,或者用等积转化法)。
如:正方形ABCD—A1B1C1D1中,棱长为a,则:
(1)点C到面AB1C1的距离为___________;
(2)点B到面ACB1的距离为____________;
(3)直线A1D1到面AB1C1的距离为____________;
(4)面AB1C与面A1DC1的距离为____________;
(5)点B到直线A1C1的距离为_____________。
62.你是否准确理解正棱柱、正棱锥的定义并掌握它们的性质?
正棱柱——底面为正多边形的直棱柱
正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。
正棱锥的计算集中在四个直角三角形中:
它们各包含哪些元素?
63.球有哪些性质?
(2)球面上两点的距离是经过这两点的大圆的劣弧长。为此,要找球心角!
(3)如图,θ为纬度角,它是线面成角;α为经度角,它是面面成角。
(5)球内接长方体的对角线是球的直径。正四面体的外接球半径R与内切球半径r之比为R:r=3:1。
积为()
答案:A
64.熟记下列公式了吗?
(2)直线方程:
65.如何判断两直线平行、垂直?
66.怎样判断直线l与圆C的位置关系?
圆心到直线的距离与圆的半径比较。
直线与圆相交时,注意利用圆的“垂径定理”。
67.怎样判断直线与圆锥曲线的位置?
68.分清圆锥曲线的定义
70.在圆锥曲线与直线联立求解时,消元后得到的方程,要注意其二次项系数是否为零?△≥0的限制。(求交点,弦长,中点,斜率,对称存在性问题都在△≥0下进行。)
71.会用定义求圆锥曲线的焦半径吗?
如:
通径是抛物线的所有焦点弦中最短者;以焦点弦为直径的圆与准线相切。
72.有关中点弦问题可考虑用“代点法”。
答案:
73.如何求解“对称”问题?
(1)证明曲线C:F(x,y)=0关于点M(a,b)成中心对称,设A(x,y)为曲线C上任意一点,设A'(x',y')为A关于点M的对称点。
75.求轨迹方程的常用方法有哪些?注意讨论范围。
(直接法、定义法、转移法、参数法)
76.对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。
学好高中数学的方法
学习高中数学上,需要形成自己独立数学思维能力,遇到数学题上我们需要多多进行独立思考,不断摸索数学解题思路,一道数学题可能有很多种解答方法,你可以选择适合自己的答题方法去解答,这样也能够提升自己数学答题效率。自己多动脑思考也方便在今后的数学解题中更好地运用答题技巧。
学好高中数学,我们要做好数学课前预习和课后复习工作,这是非常必要的步骤,课前预习中能够让我们在上课的时候紧跟老师讲课的思路,带着课前数学预习中的问题去思考答案,有助于养成数学思维,课后对于数学上的复习工作,能够让我们巩固好数学重要知识点,加深上课所讲知识的印象。
在高中数学的学习中,有很多需要我们记忆背诵的数学公式以及定理,这些都是我们在学习数学上的一些基础知识,我们一定要把相关的数学公式以及定理背下来,这样也方便我们解答高中数学题。