2023四川高考理科数学试卷+参考答案
推荐文章
2023四川高考理科数学试卷+参考答案_详解
小编整理了2023四川高考理科数学试卷+参考答案,学习是科学的大门和钥匙,学数学是令自己变的理性的一个很重要的措施,数学本身也有自身的乐趣。下面是小编为大家整理的2023四川高考理科数学试卷+参考答案,希望能帮助到大家!
2023四川高考理科数学试卷+参考答案
高中数学不等式知识点总结
1、不等关系
感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。
2、一元二次不等式
①经历从实际情境中抽象出一元二次不等式模型的过程。
②通过函数图象了解一元二次不等式与相应函数、方程的联系。
③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。
3、二元一次不等式组与简单线性规划问题
①从实际情境中抽象出二元一次不等式组。
②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。
③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。
4、基本不等式
①探索并了解基本不等式的证明过程。
②会用基本不等式解决简单的(小)值问题。
高中数学平面几何知识点总结
一、平面的基本性质与推论
1、平面的基本性质:
公理1如果一条直线的两点在一个平面内,那么这条直线在这个平面内;
公理2过不在一条直线上的三点,有且只有一个平面;
公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
2、空间点、直线、平面之间的位置关系:
直线与直线—平行、相交、异面;
直线与平面—平行、相交、直线属于该平面(线在面内,最易忽视);
平面与平面—平行、相交。
3、异面直线:
平面外一点A与平面一点B的连线和平面内不经过点B的直线是异面直线(判定);
所成的角范围(0,90)度(平移法,作平行线相交得到夹角或其补角);
两条直线不是异面直线,则两条直线平行或相交(反证);
异面直线不同在任何一个平面内;
求异面直线所成的角:平移法,把异面问题转化为相交直线的夹角。
二、空间中的平行关系
1、直线与平面平行(核心)
定义:直线和平面没有公共点。
判定:不在一个平面内的一条直线和平面内的一条直线平行,则该直线平行于此平面(由线线平行得出)。
性质:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线就和两平面的'交线平行。
2、平面与平面平行
定义:两个平面没有公共点。
判定:一个平面内有两条相交直线平行于另一个平面,则这两个平面平行。
性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;如果两个平行平面同时与第三个平面相交,那么它们的交线平行。
3、常利用三角形中位线、平行四边形对边、已知直线作一平面找其交线。
三、空间中的垂直关系
1、直线与平面垂直
定义:直线与平面内任意一条直线都垂直。
判定:如果一条直线与一个平面内的两条相交的直线都垂直,则该直线与此平面垂直。
性质:垂直于同一直线的两平面平行。
推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面。
直线和平面所成的角:【0,90】度,平面内的一条斜线和它在平面内的射影说成的锐角,特别规定垂直90度,在平面内或者平行0度。
2、平面与平面垂直
定义:两个平面所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线所成的角)。
判定:一个平面过另一个平面的垂线,则这两个平面垂直。
性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。