高一数学知识点总结及公式大全
推荐文章
高一数学知识点总结及公式大全(最新)
随着期末考试的来临,高中数学知识是非常重要的一项,那么关于高一数学有哪些重要知识点呢?以下是小编准备的一些高一数学知识点总结及公式大全,仅供参考。
高一数学知识点
【第一章:集合与函数概念】
一、集合有关概念
1.集合的含义
2.集合的中元素的三个特性:
(1)元素的确定性如:世界上的山
(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:XKb1.Com
非负整数集(即自然数集)记作:N
正整数集:N__或N+
整数集:Z
有理数集:Q
实数集:R
1)列举法:{a,b,c……}
2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{xÎR|x-3>2},{x|x-3>2}
3)语言描述法:例:{不是直角三角形的三角形}
4)Venn图:
4、集合的分类:
(1)有限集含有有限个元素的集合
(2)无限集含有无限个元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意:有两种可能
(1)A是B的一部分,;
(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实
例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”
即:
①任何一个集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)
③如果AíB,BíC,那么AíC
④如果AíB同时BíA那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集个数:
有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集
三、集合的运算
运算类型交集并集补集
定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).
【第二章:基本初等函数】
一、指数函数
(一)指数与指数幂的运算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈__.
当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).
当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,当是偶数时,
2.分数指数幂
正数的分数指数幂的意义,规定:
0的正分数指数幂等于0,0的负分数指数幂没有意义
指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.
3.实数指数幂的运算性质
(二)指数函数及其性质
1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.
注意:指数函数的底数的取值范围,底数不能是负数、零和1.
2、指数函数的图象和性质
【第三章:第三章函数的应用】
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:
方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:
求函数的零点:
(1)(代数法)求方程的实数根;
(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
二次函数.
1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
高一数学公式
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
弧长公式 l=a__r a是圆心角的弧度数r >0 扇形面积公式 s=1/2__l__r
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1__X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
降幂公式
(sin^2)x=1-cos2x/2
(cos^2)x=i=cos2x/2
万能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径
余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角
弧长公式l=a__r a是圆心角的弧度数r >0 扇形面积公式s=1/2__l__r
乘法与因式分a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系X1+X2=-b/a X1__X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
降幂公式
(sin^2)x=1-cos2x/2
(cos^2)x=i=cos2x/2
万能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
(以上k∈Z)
注意:在做题时,将a看成锐角来做会比较好做。
诱导公式记忆口诀
※规律总结※
上面这些诱导公式可以概括为:
奇变偶不变,符号看象限。
同角三角函数的基本关系式
倒数关系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
两角和差公式
两角和与差的三角函数公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
二倍角公式
二倍角的正弦、余弦和正切公式(升幂缩角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan2α=2tanα/[1-tan^2(α)]
半角公式
半角的正弦、余弦和正切公式(降幂扩角公式)
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)
万能公式
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
万能公式推导
附推导:
sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......__,
(因为cos^2(α)+sin^2(α)=1)
再把__分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))
然后用α/2代替α即可。
同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。
和差化积公式
三角函数的和差化积公式
sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
积化和差公式
三角函数的积化和差公式
sinα ·cosβ=0.5[sin(α+β)+sin(α-β)]
cosα ·sinβ=0.5[sin(α+β)-sin(α-β)]
cosα ·cosβ=0.5[cos(α+β)+cos(α-β)]
sinα ·sinβ=-0.5[cos(α+β)-cos(α-β)]
等比数列公式
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。
(1)等比数列的通项公式是:An=A1×q^(n-1)
若通项公式变形为an=a1/q__q^n(n∈N__),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q__q^x上的一群孤立的点。
(2) 任意两项am,an的关系为an=am·q^(n-m)
(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
性质:
①若m、n、p、q∈N__,且m+n=p+q,则am·an=ap·aq;
②在等比数列中,依次每k项之和仍成等比数列.
“G是a、b的等比中项”“G^2=ab(G≠0)”.
(5) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)或Sn=(a1-an__q)/(1-q)(q≠1)Sn=n__a1 (q=1)
在等比数列中,首项A1与公比q都不为零.
注意:上述公式中A^n表示A的n次方。
等比数列在生活中也是常常运用的。
如:银行有一种支付利息的方式---复利。
即把前一期的利息和本金加在一起算作本金,
再计算下一期的利息,也就是人们通常说的利滚利。
按照复利计算本利和的公式:本利和=本金__(1+利率)^存期
等差数列公式
等差数列的通项公式为:an=a1+(n-1)d
或an=am+(n-m)d
前n项和公式为:Sn=na1+n(n-1)d/2或Sn=(a1+an)n/2
若m+n=p+q则:存在am+an=ap+aq
若m+n=2p则:am+an=2ap
以上n均为正整数
文字翻译
第n项的值=首项+(项数-1)__公差
前n项的和=(首项+末项)__项数/2
公差=后项-前项
对称数列公式
对称数列的通项公式:
对称数列总的项数个数:用字母s表示
对称数列中项:用字母C表示
等差对称数列公差:用字母d表示
等比对称数列公比:用字母q表示
设,k=(s+1)/2
一般数列的通项求法
一般有:
an=Sn-Sn-1 (n≥2)
累和法(an-an-1=... an-1 - an-2=... a2-a1=...将以上各项相加可得an)。
逐商全乘法(对于后一项与前一项商中含有未知数的数列)。
化归法(将数列变形,使原数列的倒数或与某同一常数的和成等差或等比数列)。
特别的:
在等差数列中,总有Sn S2n-Sn S3n-S2n
2(S2n-Sn)=(S3n-S2n)+Sn
即三者是等差数列,同样在等比数列中。三者成等比数列
不动点法(常用于分式的通项递推关系)
特殊数列的通项的写法
1,2,3,4,5,6,7,8....... ---------an=n
1,1/2,1/3,1/4,1/5,1/6,1/7,1/8......-------an=1/n
2,4,6,8,10,12,14.......-------an=2n
1,3,5,7,9,11,13,15.....-------an=2n-1
-1,1,-1,1,-1,1,-1,1......--------an=(-1)^n
1,-1,1,-1,1,-1,1,-1,1......--------an=(-1)^(n+1)
1,0,1,0,1,0,1,01,0,1,0,1....------an=[(-1)^(n+1)+1]/2
1,0,-1,0,1,0,-1,0,1,0,-1,0......-------an=cos(n-1)π/2=sinnπ/2
9,99,999,9999,99999,......... ------an=(10^n)-1
1,11,111,1111,11111.......--------an=[(10^n)-1]/9
1,4,9,16,25,36,49,.......------an=n^2
1,2,4,8,16,32......--------an=2^(n-1)
数列前N项和公式的求法
(一)1.等差数列:
通项公式an=a1+(n-1)d 首项a1,公差d, an第n项数
an=ak+(n-k)d ak为第k项数
若a,A,b构成等差数列 则A=(a+b)/2
2.等差数列前n项和:
设等差数列的前n项和为Sn
即Sn=a1+a2+...+an;
那么Sn=na1+n(n-1)d/2
=dn^2(即n的2次方) /2+(a1-d/2)n
还有以下的求和方法: 1,不完全归纳法 2 累加法3 倒序相加法
(二)1.等比数列:
通项公式an=a1__q^(n-1)(即q的n-1次方) a1为首项,an为第n项
an=a1__q^(n-1),am=a1__q^(m-1)
则an/am=q^(n-m)
(1)an=am__q^(n-m)
(2)a,G,b 若构成等比中项,则G^2=ab (a,b,G不等于0)
(3)若m+n=p+q 则am×an=ap×aq
2.等比数列前n项和
设a1,a2,a3...an构成等比数列
前n项和Sn=a1+a2+a3...an
Sn=a1+a1__q+a1__q^2+....a1__q^(n-2)+a1__q^(n-1)(这个公式虽然是最基本公式,但一部分题目中求前n项和是很难用下面那个公式推导的,这时可能要直接从基本公式推导过去,所以希望这个公式也要理解)
Sn=a1(1-q^n)/(1-q)=(a1-an__q)/(1-q);
注: q不等于1;
Sn=na1 注:q=1
求和一般有以下5个方法: 1,完全归纳法(即数学归纳法)2 累乘法3 错位相减法 4 倒序求和法5 裂项相消法
学高一数学的方法及技巧
1、重视课本知识
对于高一学生来说,大部分数学知识的来源都是课本,只有很少的一部分知识是课外拓展。所以高一学生想要学好数学,就要先把课本知识理解透彻。平时做题的时候,也要以课本为重,把课本上的练习做会了,再做其他题。
2、课前预习
对很多高一学生来说,还没有养成良好的学习习惯,完全没有课前预习的习惯。但是如果想要学好高一数学,一定要进行适当的预习,如果时间不多,可以浏览一下老师要讲的主要内容,有一个大概的印象。这样在上课的时候,可以更好的跟上老师的思路。
3、记好笔记
对于高一学生来说,想要学好数学,记好课堂笔记也是一件很重要的事情。不要以为记笔记是文科生该做的事情,理科同样需要。高一学生要清楚,在这45分钟内,并不是所有的知识点都能掌握的,这个时候要把自己没有理解的知识点记下来,然后课下再去钻研。另外笔记也可以作为考试复习时的参考!
4、及时复习
想要学好高一数学,及时复习是其中重要的一环。高一学生可以通过反复阅读教材和查找相关资料,来加深自己对基本概念和知识体系的理解和记忆,把自己学到的新知识和旧知识联系起来,进行比较和分析。