高考数学真题电子版_高考数学真题解析大全
推荐文章
如果想要在高中数学中取得好成绩,那么每天都应该刷足够的题型,来拓展我们的题库,那么你知道高考数学真题都有哪些吗?下面小编为大家分享高考数学真题电子版_高考数学真题解析大全,希望对你有用,仅供参考!374
高考数学真题电子版
高考数学知识点总结
a(1)=a,a(n)为公差为r的等差数列
通项公式:
a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r.
可用归纳法证明。
n=1时,a(1)=a+(1-1)r=a。成立。
假设n=k时,等差数列的通项公式成立。a(k)=a+(k-1)r
则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r.
通项公式也成立。
因此,由归纳法知,等差数列的通项公式是正确的。
求和公式:
S(n)=a(1)+a(2)+...+a(n)
=a+(a+r)+...+[a+(n-1)r]
=na+r[1+2+...+(n-1)]
=na+n(n-1)r/2
同样,可用归纳法证明求和公式。
a(1)=a,a(n)为公比为r(r不等于0)的等比数列
通项公式:
a(n)=a(n-1)r=a(n-2)r^2=...=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1).
可用归纳法证明等比数列的通项公式。
求和公式:
S(n)=a(1)+a(2)+...+a(n)
=a+ar+...+ar^(n-1)
=a[1+r+...+r^(n-1)]
r不等于1时,
S(n)=a[1-r^n]/[1-r]
r=1时,
S(n)=na.
同样,可用归纳法证明求和公式。
人教版高三数学复习知识点
1、三类角的求法:
①找出或作出有关的角。
②证明其符合定义,并指出所求作的角。
③计算大小(解直角三角形,或用余弦定理)。
2、正棱柱——底面为正多边形的直棱柱
正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。
正棱锥的计算集中在四个直角三角形中:
3、怎样判断直线l与圆C的位置关系?
圆心到直线的距离与圆的半径比较。
直线与圆相交时,注意利用圆的“垂径定理”。
4、对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。
不看后悔!清华名师揭秘学好高中数学的方法
培养兴趣是关键。学生对数学产生了兴趣,自然有动力去钻研。如何培养兴趣呢?
(1)欣赏数学的美感
比如几何图形中的对称、变换前后的不变量、概念的严谨、逻辑的严密……
通过对旋转变换及其不变量的讨论,我们可以证明反比例函数、“对勾函数”的图象都是双曲线——平面上到两个定点的距离之差的绝对值为定值(小于两个定点之间的距离)的点的集合。
(2)注意到数学在实际生活中的应用。
例如和日常生活息息相关的等额本金、等额本息两种不同的还款方式,用数列的知识就可以理解.
学好数学,是现代公民的基本素养之一啊.
(3)采用灵活的教学手段,与时俱进。
利用多种技术手段,声、光、电多管齐下,老师可以借此把一些知识讲得更具体形象,学生也更容易接受,理解更深。
(4)适当看一些科普类的书籍和文章。
比如:学圆锥曲线的时候,可以看看一些建筑物的外形,它们被平面所截出的曲线往往就是各种圆锥曲线,很多文章对此都有介绍;还有圆锥曲线光学性质的应用,这方面的文章也不少。
高考数学真题电子版_高考数学真题解析大全相关文章:
★ 高考试题库