5068教学资源网 > 学习宝典 > 历史 > 学习园地 > 知识积累 > 2023小学数学四年级下册重点知识点

2023小学数学四年级下册重点知识点

彭永0分享

2023小学数学四年级下册重点知识点(8篇)

小学数学的学习需要不断的积累和创新,在平凡的学习生活中,是不是经常追着老师要知识点?知识点是指某个模块知识的重点、核心内容、关键部分。下面是小编给大家整理的2023小学数学四年级下册重点知识点,仅供参考希望能帮助到大家。

2023小学数学四年级下册重点知识点

2023小学数学四年级下册重点知识点篇1

三、其它简便运算例子:

256—58+44250÷8×4

=256+44—58=250×4÷8

=300—58=1000÷8

=242=125

五、有关简算的拓展:

102×38-38×2   125×25×32125×88

37×96+37×3+37

易错的情况:38×99+99

小数的意义和性质:

1.小数的产生:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。

2、分母是10、100、1000……的分数可以用小数来表示。

3、小数是十进制分数的另一种表现形式。

4、小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……

5、每相邻两个计数单位间的进率是10。

6、小数的数位是十分位、百分位、千分位……最高位是十分位。整数部分的最低位是个位。个位和十分位的进率是10。

7、小数的数位顺序表

整数部分小数点小数部分

数位…万位千位百位十位个位十分位百分位千分位万分位…

计数单位…万千百十一(个)十分之一百分之一千分之一万分之一…

(1)6.378的计数单位是0.001。(最低位的计数单位是整个数的计数单位)

(2)6.378中有6个一,3个十分之一(0.1),7个百分之一(0.01),

8个千分之一(0.001)。

(3)6.378中有(6378)个千分之一(0.001)。

(4)9.426中的4表示4个十分之一(0.1)[4在十分位]

8、小数的读法:先读整数部分(按照原来的读法),再读小数点,再读小数部分。读小数部分,小数部分要依次读出每个数字,而且有几个0就读几个0。

9、小数的写法:先写整数部分(按照原来的写法),再写小数点,再小数部分:写小数部分,小数部分要依次写出每个数字,而且有几个0就写几个0。

10、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。注意:小数中间的“0”不能去掉,取近似数时有一些末尾的“0”不能去掉。作用可以化简小数等。

11、小数的大小比较:(1)先比较整数部分;(2)如果整数部分相同,就比较十分位;(3)十分位相同,就比较百分位;(4)以此类推,直到比较出大小。

12、小数点的移动

小数点向右移:

移动一位,小数就扩大到原数的10倍;

移动两位,小数就扩大到原数的100倍;

移动三位,小数就扩大到原数的1000倍;……

小数点向左移:

移动一位,小数就缩小10倍,即小数就缩小到原数的;

移动两位,小数就缩小100倍,即小数就缩小到原数的;

移动三位,小数就缩小1000倍,即小数就缩小到原数的;……

13、生活中常用的单位:

质量:1吨=1000千克;1千克=1000克

长度:1千米=1000米1分米=10厘米1厘米=10毫米

1分米=100毫米1米=10分米=100厘米=1000毫米

面积:1平方米=100平方分米1平方分米=100平方厘米

1平方千米=100公顷1公顷=10000平方米

人民币:1元=10角1角=10分1元=100分

长度单位:千米——米——分米——厘米

面积单位:平方千米——公顷——平方米——平方分米———平方厘米

质量单位:吨——千克——克

单位换算:

(1)高级单位转化成低级单位====乘以进率,小数点向右移动。

(2)低级单位转化成高级单位====除以进率,小数点向左移动。

14、小数的近似数(用“四舍五入”的方法):

(1)保留整数,表示精确到个位,就是要把小数部分省略,要看十分位,如果十分位的数字大于或等于5则向前一位进一。如果小于五则舍。

(2)保留一位小数,表示精确到十分位,就要把第一位小数以后的部分全部省略,这时要看小数的第二位,如果第二位的数字比5小则全部舍。反之,要向前一位进一。

(3)保留两位小数,表示精确到百分位,就要把第二位小数以后的部分全部省略,这时要看小数的第三位,如果第三位的数字比5小则全部舍。反之,要向前一位进一。

(4)为了读写的方便,常常把不是整万或整亿的数改写成用“万”或“亿”作单位的数。改写成“万”作单位的数就是小数点向左移4位,即在万位的右边点上小数点,在数的后面加上“万”字。改写成“亿”作单位的数就是小数点往左移8位即在亿位的右边点上小数点,在数的后面加上“亿”字。注意:带上单位。然后再根据小数的性质把小数末尾的零去掉即可。

(5)在表示近似数时,小数末尾的“0”不能去掉。

三角形:

1、三角形的定义:由三条线段围成的`图形(每相邻两条线段的端点相连或重合),叫三角形。

2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。三角形只有3条高。重点:三角形高的画法。

3、三角形的特性:1、物理特性:稳定性。如:自行车的三角架,电线杆上的三角架。

4、边的特性:任意两边之和大于第三边。

5、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。

6、三角形的分类:

按照角大小来分:锐角三角形,直角三角形,钝角三角形。

按照边长短来分:三边不等的△,等腰△(等边三角形或正三角形是特殊的等腰△)。

等边△的三边相等,每个角是60度。(顶角、底角、腰、底的概念)

7、三个角都是锐角的三角形叫做锐角三角形。

8、有一个角是直角的三角形叫做直角三角形。

9、有一个角是钝角的三角形叫做钝角三角形。

10、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角。

11、两条边相等的三角形叫做等腰三角形。

12、三条边都相等的三角形叫等边三角形,也叫正三角形。

13、等边三角形是特殊的等腰三角形

14、三角形的内角和等于180度。四边形的内角和是360°有关度数的计算以及格式。

15、图形的拼组:两个完全一样的三角形一定能拼成一个平行四边形。

16、用2个相同的三角形可以拼成一个平行四边形。

17、用2个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形。

18、用2个相同的等腰的直角的三角形可以拼成一个平行四边形、一个正方形。一个大的等腰的直角的三角形。

19、密铺:可以进行密铺的图形有长方形、正方形、三角形以及正六边形等。

小数的加减法:

1、计算法则:相同数位对齐(小数点对齐),按照整数计算方法进行计算,得数的小数点要和横线上的小数的小数点对齐。结果是小数的要依据小数的性质进行化简。

2、竖式计算以及验算。注意横式上要写上答案,不要写成验算的结果。

3、整数的四则运算顺序和运算定律在小数中同样适用。(简算)

统计:

1、条形统计图优点:直观地反映数量的多少。

2、折线统计图优点:既可以反映数量的多少,又能反映数量的增减变化。

3、折线统计图中,变化趋势指:上升或者下降。

4、折线统计图:是用一个单位长度表示一定的数量,根据数量的多少描出各点,再把各点用线段顺次连接起来。

5、优点:不仅可以看出数量的多少,还可以看出数量的增减变化情况,预测今后的趋势,对今后的生产和生活提供指导和帮助。

数学广角:植树问题

(一)植树问题:

1、两端要栽:间隔数=总长÷间距;总长=间距×间隔数;棵数=间隔数+1;间隔数=棵数-1

2、两端不栽:间隔数=总长÷间距;总长=间距×间隔数;棵数=间隔数-1;间隔数=棵数+1

间隔数=总长度÷间隔长度

情况分类:1、两端都植:棵数=间隔数+1

2、一端植,一端不植:棵数=间隔数

3、两端都不植:棵数=间隔数-1

4、封闭:棵数=间隔数

(二)锯木问题:段数=次数+1;次数=段数-1

总时间=每次时间×次数

(三)方阵问题:最外层的数目是:边长×4—4或者是(边长-1)×4

整个方阵的总数目是:边长×边长

(四)封闭的图形(例如围成一个圆形、椭圆形):总长÷间距=间隔数;棵数=间隔数

(五)棋盘棋子数目:

1、棋盘最外层棋子数:每边棋子数×边数-边数

2、棋盘总的棋子数:每行棋子数×每列棋子数

3、方阵最外层人数:每边人数×4-4

4、多边形上摆花盆:每边摆的花盆数×边数-边数

2023小学数学四年级下册重点知识点篇2

1.小数加、减法应注意:

(1)小数点要对齐,也就是相同的数位要对齐;

(2)从最低位算起;

(3)得数小数部分末尾有0,一般要把0去掉。

2.在小数减法中,如果被减数是整数,一般要补齐小数部分,补几位,看减数。例如:20-1.86,列竖式时应写成

3.整数的`运算定律在小数运算中同样适用。

4.关于解决小数中人民币的问题,如没有特殊要求,一般保留两位小数。

5.条形统计图很容易看出数量的多少,折线统计图不但可以看出数量的多少,而且能清楚地表示出数量的增减变化。

6.在折线统计图中,所画的线段越接近垂直(或线段越长)说明上升(或下降)的越快;所画的线段越接近水平(或线段越短),说明变化得越小。

如果观察不出折线统计图的趋势来,只好计算后再作比较。

7.折线统计图的特点:能反映变化趋势。

2023小学数学四年级下册重点知识点篇3

小数的加减法

1、计算法则:相同数位对齐(小数点对齐),按照整数计算方法进行计算,得数的小数点要和横线上的小数的小数点对齐。结果是小数的要依据小数的性质进行化简。

2、竖式计算以及验算。注意横式上要写上答案,不要写成验算的结果。

3、整数的四则运算顺序和运算定律在小数中同样适用。(简算)

统计

1、条形统计图优点:直观地反映数量的多少。

2、折线统计图优点:既可以反映数量的多少,又能反映数量的增减变化。

3、折线统计图中,变化趋势指:上升或者下降。

4、折线统计图:是用一个单位长度表示一定的数量,根据数量的多少描出各点,再把各点用线段顺次连接起来。

5、优点:不仅可以看出数量的多少,还可以看出数量的增减变化情况,预测今后的趋势,对今后的生产和生活提供指导和帮助。

乘法分配律

摘要:乘法分配律的应用:

①类型一:(a+b)×c(a-b)×c

=a×c+b×c=a×c-b×c

②类型二:a×c+b×ca×c-b×c

=(a+b)×c=(a-b)×c

③类型三:a×99+aa×b-a

=a×(99+1)=a×(b-1)

④类型四:a×99a×102

=a×(100-1)=a×(100+2)

=a×100-a×1=a×100+a×2

四则运算

摘要:1、加法、减法、乘法和除法统称四则运算。

2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

1、加法、减法、乘法和除法统称四则运算。

2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。

4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

5、加法、减法、乘法和除法统称为四则运算。

关于“0”的运算

1、“0”不能做除数;字母表示:a÷0错误

2、一个数加上0还得原数;字母表示:a+0=a

3、一个数减去0还得原数;字母表示:a-0=a

4、被减数等于减数,差是0;字母表示:a-a=0

5、一个数和0相乘,仍得0;字母表示:a×0=0

6、0除以任何非0的数,还得0;字母表示:0÷a(a≠0)=0

7、0÷0得不到固定的商;5÷0得不到商.

运算定律及简便运算

摘要:一、加法运算定律

1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a

一、加法运算定律

1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a

2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+(b+c)加法的这两个定律往往结合起来一起使用。如:165+93+35=93+(165+35)依据是什么?

3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-(b+c)

二、乘法运算定律:

1、乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a

2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。(a×b)×c=a×(b×c)

乘法的这两个定律往往结合起来一起使用。如:125×78×8的'简算

3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c

知识点讲解

1、亿以内数的读数方法。

含有个级、万级和亿级的数,必须先读亿级,再读万级,最后读个级。(即从高位读起)亿级或万级的数都按个级读数的方法,在后面要加上亿或万。在级末尾的零不读,在级中间的零必须读。中间不管连续有几个零,只读一个零。

2、亿以内数的写数方法。

从高位写起,按照数位的顺序写,中间或末尾哪一位上一个单位也没有,就在那一位上写0。

3、比较数大小的方法。

多位数比较大小,如果位数不同,那么位数多的这个数就大,位数少的这个数就小。如果位数相同,从左起第一位开始比起,哪个数字大,哪个数就大。如果左起第一位上的数相同,就开始比第二位……直到比出大小为止。

知识点

1.直线、射线、角

直线:向两端无限延伸的线,直线无端点。

射线:能像一个方向延伸的线,射线有一个端点。

线段:不能延伸的线,线段有两个端点。

角:

具有公共端点的两条射线组成的图形叫做角。

这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

2.直线、射线与线段的联系和区别

1)直线和射线都可以无限延伸,因此无法量出长短。

2)线段可以量出长度。

3)线段有两个端点,直线没有端点,射线只有一个端点。

3.角的特征

数学广角(植树问题)

一、1.两头(两端)要栽:棵数=间隔数+1

2.一头(一端)要栽:棵数=间隔数

3.两头(两端)不栽:棵数=间隔数-1

二、棋盘棋子数目:

1.棋盘最外层棋子数:每边棋子数×边数-边数

2.棋盘总的棋子数:每行棋子数×每列棋子数

3.方阵最外层人数:每边人数×4-4

4.多边形上摆花盆:每边摆的花盆数×边数-边数

数学广角——鸽巢问题

一、鸽巢问题

1.把n+1(n是大于的自然数)个物体放进n个“鸽笼”中,总有一个“鸽笼”至少放进了2个物体。

2.把多于kn(k、n都是大于的自然数)个物体放进n个“鸽笼”中,总有一个“鸽笼”至少放进(k+1)个物体。

二、鸽巢问题的应用

1.如果有n(n是大于的自然数)个“鸽笼”,要保证有一个“鸽笼”至少放进了2个物品,那么至少需要有n+1个物品。

2.如果有n(n是大于的自然数)个“鸽笼”,要保证有一个“鸽笼”至少放进了(k+1)(k是大于的自然数)个物品,那么至少需要有(kn+1)个物品。

3.(分放的物体总数-1)÷(其中一个鸽笼里至少有的物体个数-1)=a……b(b),a就是所求的鸽笼数。

4.利用“鸽巢问题”解决问题的思路和方法:构造“鸽巢”,建立“数学模型”;把物体放入“鸽巢”,进行比较分析;说明理由,得出结论。

例如:有4只鸽子飞进3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。

提示:解决“鸽巢问题”的关键是找准谁是“鸽笼”,谁是“鸽子”。

小学数学四大领域主要内容

数与代数:的认识,数的表示,数的大小,数的运算,数量的估计;

图形与几何:空间与平面的基本图形,图形的性质和分类;图形的平移、旋转、轴对称;

统计与概率:收集、整理和描述数据,处理数据;

实践与综合应用:以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。

数学列方程解应用题的一般步骤

1、弄清题意,找出未知数,并用X表示;

2、找出应用题中数量之间的相等关系,列方程;

3、解方程;

4、检验、写出答案。

算式知识点:

第一组算式:积的位数是两个因数位数之和-1,积的最高位和最低位都是1,中间的数字为因数的位数,两边的数字相同并依次减1。(此为回文数)

第二组算式:积都由1、4、2、8、5、7几个数字组成,而且前后排列的顺序不变,只需要确定末位数字就可以算出积(如果能直接推算出首位数字则更好)

第三组算式:积的个位都是1,首位都是9;积的位数正好是两个因数位数之和;积的每一位都是由9、8、0、1组成,只要在首位补9,倒数第二位补0就可以了,只有一个8和一个1。

第四组算式:在0~9的十个数字中,任意选择四个数字,组成数字不重复的最大的四位数和最小的四位数。然后两数相减,并把结果的四个数字重现组成一个最大的四位数与最小的四位数。再次相减······在这样不断重复的过程中,最后得到数字4176。

拓展:期末试题

1、最小的自然数加上最小的质数和合数,和是()。

2、既是2和3的倍数,同时又是5的倍数的最大两位数是()

3、学校锅炉3周烧了20吨煤,平均每周烧这些煤的(),平均每周烧了()吨。

4、一个平行四边形的面积是24平方厘米,与它同底等高的三角形的面积是(),如果底是4厘米,那么高是()厘米。

5、分母是12的所有真分数的和是()。

6、如果a÷b=9,那么a和b的最大公因数是(),最小公倍数是()。

7、0.125=()16=4()=5÷()

8、如果a=2×3×5,b=2×5×7,那么a和b的最大公因数是(),最小公倍数是()。

9、三张卡片上分别写有数字"1"、"2","3",任意抽出一张,抽出卡片"1"的可能性是()()。

10、在下面的括号里填上合适的分数。

1.2时=()时()分2千克50克=()千克

40平方厘米=()平方分米25厘米=()分米

11、全班同学分组劳动,每7人一组或是每8人一组都剩1人,全班一共有()人。

拓展:单元测验

一、怎样简便就怎样计算。

365+260+235 672-36+64 278-131-69

280÷8÷5 58×58+58×42 44×25

二、填空。

1.在横线上填上适当的数,并填写所用的运算定律。

45×32=32×( ) ( );

43+55+57+45=(43+ )+(55+ )( );

103×42=( )×42+ ( )×42 ( );

2.比较大小。

1200÷4÷6 ○1200÷24 12×6+6×28○6×(12+28)

125×8×25×4○125×8+25×4 197-37+63○197―37―63

三、判断题。(对的打“√”,错的打“×”。)

1.39+84+16=39+100 ( )

2.125×16=125×8×2 ( )

3.根据乘法分配律125×25×8×4=125×8+25×4 ( )

4.先乘前两个数,或者先乘后两个数,积不变,这是乘法结合律。( )

5.280÷(5×8)=1250÷5×8 ( )

四、选择。(把正确答案的序号填入括号内)

1.56+72+28=56+(72+28)运用了 ( )。

A.加法交换律 B.加法结合律

C.乘法结合律 D.加法交换律和结合律

2.25×(8+4)=( )。

A.25×8×25×4 B.25×8+25×4

C.25×4×8 D.25×8+4

3.3×8×4×5=(3×4)×(8×5)运用了 ( )。

A.乘法交换律 B.乘法结合律

C.乘法分配律 D.乘法交换律和结合律

4.计算199×29,正确使用简便方法的是( )。

A.199×30-1 B.200×30 C.200×29-29

5.下面这3个物体,从( )面看到的形状相同。

A.上面 B.前面 C.左面

五、应用题。

1.学校图书室买来720本书,放在4个书架上,每个书架有5层,平均每层放多少本书?

2. 学校进行广播操比赛,有12个班参加,每个班排成4组,每组有12人,一共有多少名学生参加广播操比赛?

3.一辆汽车5小时行360千米,一辆自行车3小时行54千米。汽车的速度是自行车的多少倍?

4.学校要买35套桌椅,3000元钱够吗?

拓展:期中试卷

一、选择题:(请将正确答案的序号填在括号里)每题1分,共5分。

1. 下列算式中,运用乘法交换律使运算简便的是( )。

A、64×101 B、125×66×8 C、352×5×2

2. 一辆汽车一次运大米6吨,增加同样的汽车4辆,运90吨大米要运( )次。

A、3 B、4 C、15

3. 小方3分钟跳绳453下,小明2分钟跳286下,( )的速度快。

A、小方 B、小明 C、无法确法

4. 下面哪个算式是正确的。 ( )

A、99+1×23=100×23 B、201×50=200×50+1 C、75+34+66=75+100

5. 大于0.2而小于0.5的小数有( )。

A、1个 B、2个 C、无数个

二、判断题:(正确的在括号内打“√”,错的打“×”)每题1分,共5分。

1.85乘23与77的和,积是多少?正确列式是:85×23+77( )

2.24×5×75×5=(24+75)×5( )

3.25×4÷25×4=100÷100=l( )

4.56×17+43×17十17的简便算法是(56+43+l)×17( )

5.35×99=35×100+35=3535。( )

三、填空题:(每空2分,共16分)

1. 乘法分配律用字母表示( )。

2. 30与23的和乘46,积是( ),列式为( )。

3. 一个数同0相乘,积是( ),一个数加上( ),还得原数。

4. 根据运算定律在( )填数。

125×(8× )=(125× )×13

四、计算题。(30分)

1. 直接写得数。(12分)

84÷21= 300-50÷5= 760-10×50= 45÷(3×5)=

0÷35= 200÷5÷4= 35-5×6= 58×0+987=

2. 怎样简便就怎样计算(18分)

(1)58×72+28×58

(2)3000÷125÷8

(3)486-137-63

(4)432÷54+17×54

(5)99×78+78

(6)125×24

五、画一画。(9分)

请在平面图上确定以下地方的位置。

1. 食堂在操场东偏北30°方向上约150米处。

2. 大门在操场西偏北45°方向上约200米处。

3. 从操场向南走100米,再向东走200米是沙坑。

六、解决问题。(共35分)

1. 妈妈带600元钱去商场,买了一件羊毛衫用去248元,又买了一个皮包用去252元,应找回多少元?(5分)

2. 学校买来篮球和排球各23个,篮球每个76元,排球每个24元,学校共花多少元?(6分)

3. 小明家距离学校768米,小军每天上学要走12分钟,照这样的速度,他去离家1536米的李红家,要走多少分钟?(6分)

4. 四(1)班同学在社区清理白色垃圾,男生捡到36个饮料瓶,女生捡到的饮料瓶比男生的两倍还多6个,四(1)班同学一共捡到多少个饮料瓶?(6分)

5. 水果店进来36箱香蕉,每箱香蕉重25千克,每千克卖4元,全部卖完可卖多少钱?(6分)

6. 每袋大米重50千克,每车能装160袋,32吨大米需要几车才能一次运完? (6分)

七、附加题。(共10分)

小明今年12岁,爸爸40岁,当爸爸的年龄是女儿5倍的时候,父女两人年龄的和是多少岁?

2023小学数学四年级下册重点知识点篇4

1.由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。

2.三角形有3个角、3条边、3个顶点。

3.从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条边叫做三角形的底。

4.为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。

5.三角形具有稳定性。

6.三角形的任意两边的和大于第三边。

7.三角形按角分成:

(1)锐角三角形(三个内角都是锐角的三角形)

(2)直角三角形(有一个角是直角的三角形)

(3)钝角三角形(有一个角是钝角的三角形)

8.三角形按边分成:

(1)等腰三角形(有两条边相等,相等的两条边叫做三角形的腰;有两个角相等,相等的两个角叫做底角。)

(2)等边三角形(三边相等,三个内角相等都是60°)

(3)一般三角形

9.三角形中只能有一个直角;三角形中只能有一个钝角;

三角形中至少有两个锐角,最多有三个锐角。

10.三角形的内角和是180°。

11.最少用2个相同直角三角形可以拼一个平行四边形。最少用3个相同等边三角形可以拼一个梯形。最少用2个相同等边三角形可以拼一个平行四边形。最少用2个相同等腰直角三角形可以拼一个正方形。最少用2个相同直角三角形可以拼一个长方形。

12.无论是什么形状的图形,没有重叠,没有空隙地铺在平面上,就是密铺。

数学万级数的读法法则

1、先读万级,再读个级;

2、万级的数要按个级的读法来读,再在后面加上一个“万”字;

3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

小学数学必背公式

关系表达式

1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数

2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度

4、单价×数量=总价总价÷单价=数量总价÷数量=单价

5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率

6、加数+加数=和和-一个加数=另一个加数

7、被减数-减数=差被减数-差=减数差+减数=被减数

8、因数×因数=积积÷一个因数=另一个因数

9、被除数÷除数=商被除数÷商=除数商×除数=被除数

单位间进率

1公里=1千米1千米=1000米

1米=10分米1分米=10厘米1厘米=10毫米

1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米

1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米

1吨=1000千克1千克= 1000克= 1公斤= 1市斤

1公顷=10000平方米1亩=666.666平方米

1升=1立方分米=1000毫升1毫升=1立方厘米

2023小学数学四年级下册重点知识点篇5

运算定律及简便运算

一、加法运算定律:

1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a

2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+b+c

加法的这两个定律往往结合起来一起使用。

如:165+93+35=93+(165+35)依据是什么?

3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-b+c

二、乘法运算定律:

1、乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a

2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。(a×b)×c=a×b×c

乘法的这两个定律往往结合起来一起使用。如:125×78×8的简算

3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这个数相乘,再把积相加。

(a+b)×c=a×c+b×c a-b×c=a×c-b×c

鸡兔问题公式

(1)已知总头数和总脚数,求鸡、兔各多少:

(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;

总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;

总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”

解一(100-2×36)÷(4-2)=14(只)………兔;

36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;

36-22=14(只)…………………………兔。

(答略)

(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式

(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;

总头数-兔数=鸡数

或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;

总头数-鸡数=兔数。(例略)

(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的'脚数)=兔数;

总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;

总头数-鸡数=兔数。(例略)

(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:

(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”

解一(4×1000-3525)÷(4+15)

=475÷19=25(个)

解二1000-(15×1000+3525)÷(4+15)

=1000-18525÷19

=1000-975=25(个)(答略)

(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费__元,破损者不仅不给运费,还需要赔成本__元……。它的解法显然可套用上述公式。)

(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:

〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;

〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。

例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”

解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2

=20÷2=10(只)……………………………鸡

〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2

=12÷2=6(只)…………………………兔(答略)

鸡兔同笼

1、鸡兔同笼属于假设问题,假设的和最后结果相反。

2、“鸡兔同笼”问题的解题方法

假设法:

①假如都是兔

②假如都是鸡

③古人“抬脚法”:

解答思路:

假如每只鸡、每只兔各抬起一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”。这样,鸡和兔的脚的总数就少了一半。这种思维方法叫化归法。

3、公式:

鸡兔总脚数÷2-鸡兔总数=兔的只数;

鸡兔总数-兔的只数=鸡的只数。

四则运算

1、加法、减法、乘法和除法统称四则运算。

2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。

4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

5、先乘除,后加减,有括号,提前算

关于“0”的运算

1、“0”不能做除数; 字母表示:a÷0错误

2、一个数加上0还得原数; 字母表示:a+0=a

3、一个数减去0还得原数; 字母表示:a-0=a

4、被减数等于减数,差是0; 字母表示:a-a=0

5、一个数和0相乘,仍得0; 字母表示:a×0=0

6、0除以任何非0的数,还得0; 字母表示:0÷a(a≠0)=0

7、0÷0得不到固定的商; 5÷0得不到商.(无意义)

2023小学数学四年级下册重点知识点篇6

第一单元知识点(四则运算)

1. 在没有括号的算式里,如果只有加、减法或者只有乘除法,都要从左往右按顺序计算。(这是同级运算)

2. 在没有括号的算式里,有乘、除法和加减法,要先算乘除法,在算加减法。(这是两级运算)

3. 算式里有括号,先算括号里面的,在算括号外面的。

4. 加法、减法、乘法和除法统称四则运算。

5. 一个数加上0还得原数,一个数减去0也得原数。

6. 被减数等于减数,差是0。

7. 一个数和零相乘,仍得0。

8. 0除以一个非0的数,还得0。

9. 0不能作除数。

10. 在解决问题时,如果列综合算式,必须用脱式计算。

11. 任何数除以0都得0。(×)因为0不能做除数。

第二单元知识点(观察物体)

1. 如何确定物体所在的位置?

(1)明确方向。

(2)明确距离。

2.根据方向和距离来确定物体的位置。

3.在生活中一般先说物体所在方向离的近(夹角较小)的方位。

4.平面图形的一般画法:

(1)先确定某建筑物的方向。

(2)再确定角度。(测量角度时,哪个方位在前,0刻度线就对准谁。)

(3)最后确定距离。

5.两个城市的位置具有相对性,方向相对,角度和距离不发生改变。例如:甲地在乙地的南偏东30度500米处,则乙地在甲地的北偏西30度500米处。

第三单元知识点(运算定律)

1.两个数相加,两个加数交换位置,和不变。这叫做加法交换律。

用字母表示为:a+b=b+a

2.三个数相加,先把前两个数相加,再加第三个数,或者先把后两个数相加,再加第一个数,和不变。这叫做加法结合律。用字母表示为:(a+b)+c=a+(b+c)

3.两个数相乘,交换两个因数的位置,积不变。这叫做乘法交换律。

用字母表示为:a×b=b×a

4.三个数相乘,先让前两个数相乘,再乘第三个数,或者先让后两个数相乘,再乘第一个数,积不变。这叫做乘法结合律。

用字母表示为:(a×b) ×c=a×(b×c)

5.两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。用字母表示为:(a+b)×c=a×c+b×c

6. 类似于乘法分配律的简便公式;

(a-b)×c=a×c-b×c

(a+b)÷c=a÷c+b÷c

(a-b)÷c=a÷c-b÷c

7.从一个数里连续减去两个数,等于从这个数里减去另两个数的和。这叫做减法的运算性质。用字母表示为:a-b-c=a-(b+c)

8.在一个带有括号的算式中,括号前面是“+”,去掉括号后,括号里面的运算符号不发生改变。用字母表示为:a+(b+c)=a+b+c a+(b-c)=a+b-c

括号前面是“-”,去掉括号后,括号里面的运算符号发生了变化,“+”变“-”, “-”变“+”。 用字母表示为:a-(b+c)=a-b-c a-(b-c)=a-b+c

9.一个数连续除以两个数,等于这个数除以另两个数的积。这时除法的运算性质。用字母表示为:a÷b÷c=a÷(b×c)

10. 在一个带有括号的算式中,括号前面是“×”,去掉括号后,括号里面的运算符号不发生改变。用字母表示为:

a×(b×c)=a×b×c a×(b÷c)=a×b÷c

括号前面是“÷”,去掉括号后,括号里面的运算符号发生了改变。用字母表示为:a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c

12. 另两种简便方法:

(1) 把一个因数改写成两个一位数相乘的形式。

(2) 把一个因数改写成两个数相除的形式,然后变成乘除混和运算。

2023小学数学四年级下册重点知识点篇7

1、亿以内数的读数方法。

含有个级、万级和亿级的数,必须先读亿级,再读万级,最后读个级。(即从高位读起)亿级或万级的数都按个级读数的`方法,在后面要加上亿或万。在级末尾的零不读,在级中间的零必须读。中间不管连续有几个零,只读一个零。

2、亿以内数的写数方法。

从高位写起,按照数位的顺序写,中间或末尾哪一位上一个单位也没有,就在那一位上写0。

3、比较数大小的方法。

多位数比较大小,如果位数不同,那么位数多的这个数就大,位数少的这个数就小。如果位数相同,从左起第一位开始比起,哪个数字大,哪个数就大。如果左起第一位上的数相同,就开始比第二位……直到比出大小为止。

2023小学数学四年级下册重点知识点篇8

1、加法运算定律:①加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a;②加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+(b+c);③加法的这两个定律往往结合起来一起使用。

2、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-(b+c)。

3、乘法运算定律:①乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a;②乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。(a×b)×c=a×(b×c),乘法的`这两个定律往往结合起来一起使用。③乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。(a+b)×c=a×c+b×c。

4、连除的性质:一个数连续除以两个数,等于除以这两个数的积。a÷b÷c=a÷(b×c)。

    838514