2023小学数学四年级下册重点知识点
推荐文章
2023小学数学四年级下册重点知识点(8篇)
小学数学的学习需要不断的积累和创新,在平凡的学习生活中,是不是经常追着老师要知识点?知识点是指某个模块知识的重点、核心内容、关键部分。下面是小编给大家整理的2023小学数学四年级下册重点知识点,仅供参考希望能帮助到大家。
2023小学数学四年级下册重点知识点篇1
三、其它简便运算例子:
256—58+44250÷8×4
=256+44—58=250×4÷8
=300—58=1000÷8
=242=125
五、有关简算的拓展:
102×38-38×2 125×25×32125×88
37×96+37×3+37
易错的情况:38×99+99
小数的意义和性质:
1.小数的产生:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。
2、分母是10、100、1000……的分数可以用小数来表示。
3、小数是十进制分数的另一种表现形式。
4、小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……
5、每相邻两个计数单位间的进率是10。
6、小数的数位是十分位、百分位、千分位……最高位是十分位。整数部分的最低位是个位。个位和十分位的进率是10。
7、小数的数位顺序表
整数部分小数点小数部分
数位…万位千位百位十位个位十分位百分位千分位万分位…
计数单位…万千百十一(个)十分之一百分之一千分之一万分之一…
(1)6.378的计数单位是0.001。(最低位的计数单位是整个数的计数单位)
(2)6.378中有6个一,3个十分之一(0.1),7个百分之一(0.01),
8个千分之一(0.001)。
(3)6.378中有(6378)个千分之一(0.001)。
(4)9.426中的4表示4个十分之一(0.1)[4在十分位]
8、小数的读法:先读整数部分(按照原来的读法),再读小数点,再读小数部分。读小数部分,小数部分要依次读出每个数字,而且有几个0就读几个0。
9、小数的写法:先写整数部分(按照原来的写法),再写小数点,再小数部分:写小数部分,小数部分要依次写出每个数字,而且有几个0就写几个0。
10、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。注意:小数中间的“0”不能去掉,取近似数时有一些末尾的“0”不能去掉。作用可以化简小数等。
11、小数的大小比较:(1)先比较整数部分;(2)如果整数部分相同,就比较十分位;(3)十分位相同,就比较百分位;(4)以此类推,直到比较出大小。
12、小数点的移动
小数点向右移:
移动一位,小数就扩大到原数的10倍;
移动两位,小数就扩大到原数的100倍;
移动三位,小数就扩大到原数的1000倍;……
小数点向左移:
移动一位,小数就缩小10倍,即小数就缩小到原数的;
移动两位,小数就缩小100倍,即小数就缩小到原数的;
移动三位,小数就缩小1000倍,即小数就缩小到原数的;……
13、生活中常用的单位:
质量:1吨=1000千克;1千克=1000克
长度:1千米=1000米1分米=10厘米1厘米=10毫米
1分米=100毫米1米=10分米=100厘米=1000毫米
面积:1平方米=100平方分米1平方分米=100平方厘米
1平方千米=100公顷1公顷=10000平方米
人民币:1元=10角1角=10分1元=100分
长度单位:千米——米——分米——厘米
面积单位:平方千米——公顷——平方米——平方分米———平方厘米
质量单位:吨——千克——克
单位换算:
(1)高级单位转化成低级单位====乘以进率,小数点向右移动。
(2)低级单位转化成高级单位====除以进率,小数点向左移动。
14、小数的近似数(用“四舍五入”的方法):
(1)保留整数,表示精确到个位,就是要把小数部分省略,要看十分位,如果十分位的数字大于或等于5则向前一位进一。如果小于五则舍。
(2)保留一位小数,表示精确到十分位,就要把第一位小数以后的部分全部省略,这时要看小数的第二位,如果第二位的数字比5小则全部舍。反之,要向前一位进一。
(3)保留两位小数,表示精确到百分位,就要把第二位小数以后的部分全部省略,这时要看小数的第三位,如果第三位的数字比5小则全部舍。反之,要向前一位进一。
(4)为了读写的方便,常常把不是整万或整亿的数改写成用“万”或“亿”作单位的数。改写成“万”作单位的数就是小数点向左移4位,即在万位的右边点上小数点,在数的后面加上“万”字。改写成“亿”作单位的数就是小数点往左移8位即在亿位的右边点上小数点,在数的后面加上“亿”字。注意:带上单位。然后再根据小数的性质把小数末尾的零去掉即可。
(5)在表示近似数时,小数末尾的“0”不能去掉。
三角形:
1、三角形的定义:由三条线段围成的`图形(每相邻两条线段的端点相连或重合),叫三角形。
2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。三角形只有3条高。重点:三角形高的画法。
3、三角形的特性:1、物理特性:稳定性。如:自行车的三角架,电线杆上的三角架。
4、边的特性:任意两边之和大于第三边。
5、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。
6、三角形的分类:
按照角大小来分:锐角三角形,直角三角形,钝角三角形。
按照边长短来分:三边不等的△,等腰△(等边三角形或正三角形是特殊的等腰△)。
等边△的三边相等,每个角是60度。(顶角、底角、腰、底的概念)
7、三个角都是锐角的三角形叫做锐角三角形。
8、有一个角是直角的三角形叫做直角三角形。
9、有一个角是钝角的三角形叫做钝角三角形。
10、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角。
11、两条边相等的三角形叫做等腰三角形。
12、三条边都相等的三角形叫等边三角形,也叫正三角形。
13、等边三角形是特殊的等腰三角形
14、三角形的内角和等于180度。四边形的内角和是360°有关度数的计算以及格式。
15、图形的拼组:两个完全一样的三角形一定能拼成一个平行四边形。
16、用2个相同的三角形可以拼成一个平行四边形。
17、用2个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形。
18、用2个相同的等腰的直角的三角形可以拼成一个平行四边形、一个正方形。一个大的等腰的直角的三角形。
19、密铺:可以进行密铺的图形有长方形、正方形、三角形以及正六边形等。
小数的加减法:
1、计算法则:相同数位对齐(小数点对齐),按照整数计算方法进行计算,得数的小数点要和横线上的小数的小数点对齐。结果是小数的要依据小数的性质进行化简。
2、竖式计算以及验算。注意横式上要写上答案,不要写成验算的结果。
3、整数的四则运算顺序和运算定律在小数中同样适用。(简算)
统计:
1、条形统计图优点:直观地反映数量的多少。
2、折线统计图优点:既可以反映数量的多少,又能反映数量的增减变化。
3、折线统计图中,变化趋势指:上升或者下降。
4、折线统计图:是用一个单位长度表示一定的数量,根据数量的多少描出各点,再把各点用线段顺次连接起来。
5、优点:不仅可以看出数量的多少,还可以看出数量的增减变化情况,预测今后的趋势,对今后的生产和生活提供指导和帮助。
数学广角:植树问题
(一)植树问题:
1、两端要栽:间隔数=总长÷间距;总长=间距×间隔数;棵数=间隔数+1;间隔数=棵数-1
2、两端不栽:间隔数=总长÷间距;总长=间距×间隔数;棵数=间隔数-1;间隔数=棵数+1
间隔数=总长度÷间隔长度
情况分类:1、两端都植:棵数=间隔数+1
2、一端植,一端不植:棵数=间隔数
3、两端都不植:棵数=间隔数-1
4、封闭:棵数=间隔数
(二)锯木问题:段数=次数+1;次数=段数-1
总时间=每次时间×次数
(三)方阵问题:最外层的数目是:边长×4—4或者是(边长-1)×4
整个方阵的总数目是:边长×边长
(四)封闭的图形(例如围成一个圆形、椭圆形):总长÷间距=间隔数;棵数=间隔数
(五)棋盘棋子数目:
1、棋盘最外层棋子数:每边棋子数×边数-边数
2、棋盘总的棋子数:每行棋子数×每列棋子数
3、方阵最外层人数:每边人数×4-4
4、多边形上摆花盆:每边摆的花盆数×边数-边数
2023小学数学四年级下册重点知识点篇2
1.小数加、减法应注意:
(1)小数点要对齐,也就是相同的数位要对齐;
(2)从最低位算起;
(3)得数小数部分末尾有0,一般要把0去掉。
2.在小数减法中,如果被减数是整数,一般要补齐小数部分,补几位,看减数。例如:20-1.86,列竖式时应写成
3.整数的`运算定律在小数运算中同样适用。
4.关于解决小数中人民币的问题,如没有特殊要求,一般保留两位小数。
5.条形统计图很容易看出数量的多少,折线统计图不但可以看出数量的多少,而且能清楚地表示出数量的增减变化。
6.在折线统计图中,所画的线段越接近垂直(或线段越长)说明上升(或下降)的越快;所画的线段越接近水平(或线段越短),说明变化得越小。
如果观察不出折线统计图的趋势来,只好计算后再作比较。
7.折线统计图的特点:能反映变化趋势。
2023小学数学四年级下册重点知识点篇3
小数的加减法
1、计算法则:相同数位对齐(小数点对齐),按照整数计算方法进行计算,得数的小数点要和横线上的小数的小数点对齐。结果是小数的要依据小数的性质进行化简。
2、竖式计算以及验算。注意横式上要写上答案,不要写成验算的结果。
3、整数的四则运算顺序和运算定律在小数中同样适用。(简算)
统计
1、条形统计图优点:直观地反映数量的多少。
2、折线统计图优点:既可以反映数量的多少,又能反映数量的增减变化。
3、折线统计图中,变化趋势指:上升或者下降。
4、折线统计图:是用一个单位长度表示一定的数量,根据数量的多少描出各点,再把各点用线段顺次连接起来。
5、优点:不仅可以看出数量的多少,还可以看出数量的增减变化情况,预测今后的趋势,对今后的生产和生活提供指导和帮助。
乘法分配律
摘要:乘法分配律的应用:
①类型一:(a+b)×c(a-b)×c
=a×c+b×c=a×c-b×c
②类型二:a×c+b×ca×c-b×c
=(a+b)×c=(a-b)×c
③类型三:a×99+aa×b-a
=a×(99+1)=a×(b-1)
④类型四:a×99a×102
=a×(100-1)=a×(100+2)
=a×100-a×1=a×100+a×2
四则运算
摘要:1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
5、加法、减法、乘法和除法统称为四则运算。
关于“0”的运算
1、“0”不能做除数;字母表示:a÷0错误
2、一个数加上0还得原数;字母表示:a+0=a
3、一个数减去0还得原数;字母表示:a-0=a
4、被减数等于减数,差是0;字母表示:a-a=0
5、一个数和0相乘,仍得0;字母表示:a×0=0
6、0除以任何非0的数,还得0;字母表示:0÷a(a≠0)=0
7、0÷0得不到固定的商;5÷0得不到商.
运算定律及简便运算
摘要:一、加法运算定律
1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a
一、加法运算定律
1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a
2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+(b+c)加法的这两个定律往往结合起来一起使用。如:165+93+35=93+(165+35)依据是什么?
3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-(b+c)
二、乘法运算定律:
1、乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a
2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。(a×b)×c=a×(b×c)
乘法的这两个定律往往结合起来一起使用。如:125×78×8的'简算
3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c
知识点讲解
1、亿以内数的读数方法。
含有个级、万级和亿级的数,必须先读亿级,再读万级,最后读个级。(即从高位读起)亿级或万级的数都按个级读数的方法,在后面要加上亿或万。在级末尾的零不读,在级中间的零必须读。中间不管连续有几个零,只读一个零。
2、亿以内数的写数方法。
从高位写起,按照数位的顺序写,中间或末尾哪一位上一个单位也没有,就在那一位上写0。
3、比较数大小的方法。
多位数比较大小,如果位数不同,那么位数多的这个数就大,位数少的这个数就小。如果位数相同,从左起第一位开始比起,哪个数字大,哪个数就大。如果左起第一位上的数相同,就开始比第二位……直到比出大小为止。
知识点
1.直线、射线、角
直线:向两端无限延伸的线,直线无端点。
射线:能像一个方向延伸的线,射线有一个端点。
线段:不能延伸的线,线段有两个端点。
角:
具有公共端点的两条射线组成的图形叫做角。
这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
2.直线、射线与线段的联系和区别
1)直线和射线都可以无限延伸,因此无法量出长短。
2)线段可以量出长度。
3)线段有两个端点,直线没有端点,射线只有一个端点。
3.角的特征
数学广角(植树问题)
一、1.两头(两端)要栽:棵数=间隔数+1
2.一头(一端)要栽:棵数=间隔数
3.两头(两端)不栽:棵数=间隔数-1
二、棋盘棋子数目:
1.棋盘最外层棋子数:每边棋子数×边数-边数
2.棋盘总的棋子数:每行棋子数×每列棋子数
3.方阵最外层人数:每边人数×4-4
4.多边形上摆花盆:每边摆的花盆数×边数-边数
数学广角——鸽巢问题
一、鸽巢问题
1.把n+1(n是大于的自然数)个物体放进n个“鸽笼”中,总有一个“鸽笼”至少放进了2个物体。
2.把多于kn(k、n都是大于的自然数)个物体放进n个“鸽笼”中,总有一个“鸽笼”至少放进(k+1)个物体。
二、鸽巢问题的应用
1.如果有n(n是大于的自然数)个“鸽笼”,要保证有一个“鸽笼”至少放进了2个物品,那么至少需要有n+1个物品。
2.如果有n(n是大于的自然数)个“鸽笼”,要保证有一个“鸽笼”至少放进了(k+1)(k是大于的自然数)个物品,那么至少需要有(kn+1)个物品。
3.(分放的物体总数-1)÷(其中一个鸽笼里至少有的物体个数-1)=a……b(b),a就是所求的鸽笼数。
4.利用“鸽巢问题”解决问题的思路和方法:构造“鸽巢”,建立“数学模型”;把物体放入“鸽巢”,进行比较分析;说明理由,得出结论。
例如:有4只鸽子飞进3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。
提示:解决“鸽巢问题”的关键是找准谁是“鸽笼”,谁是“鸽子”。
小学数学四大领域主要内容
数与代数:的认识,数的表示,数的大小,数的运算,数量的估计;
图形与几何:空间与平面的基本图形,图形的性质和分类;图形的平移、旋转、轴对称;
统计与概率:收集、整理和描述数据,处理数据;
实践与综合应用:以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。
数学列方程解应用题的一般步骤
1、弄清题意,找出未知数,并用X表示;
2、找出应用题中数量之间的相等关系,列方程;
3、解方程;
4、检验、写出答案。
算式知识点:
第一组算式:积的位数是两个因数位数之和-1,积的最高位和最低位都是1,中间的数字为因数的位数,两边的数字相同并依次减1。(此为回文数)
第二组算式:积都由1、4、2、8、5、7几个数字组成,而且前后排列的顺序不变,只需要确定末位数字就可以算出积(如果能直接推算出首位数字则更好)
第三组算式:积的个位都是1,首位都是9;积的位数正好是两个因数位数之和;积的每一位都是由9、8、0、1组成,只要在首位补9,倒数第二位补0就可以了,只有一个8和一个1。
第四组算式:在0~9的十个数字中,任意选择四个数字,组成数字不重复的最大的四位数和最小的四位数。然后两数相减,并把结果的四个数字重现组成一个最大的四位数与最小的四位数。再次相减······在这样不断重复的过程中,最后得到数字4176。
拓展:期末试题
1、最小的自然数加上最小的质数和合数,和是()。
2、既是2和3的倍数,同时又是5的倍数的最大两位数是()
3、学校锅炉3周烧了20吨煤,平均每周烧这些煤的(),平均每周烧了()吨。
4、一个平行四边形的面积是24平方厘米,与它同底等高的三角形的面积是(),如果底是4厘米,那么高是()厘米。
5、分母是12的所有真分数的和是()。
6、如果a÷b=9,那么a和b的最大公因数是(),最小公倍数是()。
7、0.125=()16=4()=5÷()
8、如果a=2×3×5,b=2×5×7,那么a和b的最大公因数是(),最小公倍数是()。
9、三张卡片上分别写有数字"1"、"2","3",任意抽出一张,抽出卡片"1"的可能性是()()。
10、在下面的括号里填上合适的分数。
1.2时=()时()分2千克50克=()千克
40平方厘米=()平方分米25厘米=()分米
11、全班同学分组劳动,每7人一组或是每8人一组都剩1人,全班一共有()人。
拓展:单元测验
一、怎样简便就怎样计算。
365+260+235 672-36+64 278-131-69
280÷8÷5 58×58+58×42 44×25
二、填空。
1.在横线上填上适当的数,并填写所用的运算定律。
45×32=32×( ) ( );
43+55+57+45=(43+ )+(55+ )( );
103×42=( )×42+ ( )×42 ( );
2.比较大小。
1200÷4÷6 ○1200÷24 12×6+6×28○6×(12+28)
125×8×25×4○125×8+25×4 197-37+63○197―37―63
三、判断题。(对的打“√”,错的打“×”。)
1.39+84+16=39+100 ( )
2.125×16=125×8×2 ( )
3.根据乘法分配律125×25×8×4=125×8+25×4 ( )
4.先乘前两个数,或者先乘后两个数,积不变,这是乘法结合律。( )
5.280÷(5×8)=1250÷5×8 ( )
四、选择。(把正确答案的序号填入括号内)
1.56+72+28=56+(72+28)运用了 ( )。
A.加法交换律 B.加法结合律
C.乘法结合律 D.加法交换律和结合律
2.25×(8+4)=( )。
A.25×8×25×4 B.25×8+25×4
C.25×4×8 D.25×8+4
3.3×8×4×5=(3×4)×(8×5)运用了 ( )。
A.乘法交换律 B.乘法结合律
C.乘法分配律 D.乘法交换律和结合律
4.计算199×29,正确使用简便方法的是( )。
A.199×30-1 B.200×30 C.200×29-29
5.下面这3个物体,从( )面看到的形状相同。
A.上面 B.前面 C.左面
五、应用题。
1.学校图书室买来720本书,放在4个书架上,每个书架有5层,平均每层放多少本书?
2. 学校进行广播操比赛,有12个班参加,每个班排成4组,每组有12人,一共有多少名学生参加广播操比赛?
3.一辆汽车5小时行360千米,一辆自行车3小时行54千米。汽车的速度是自行车的多少倍?
4.学校要买35套桌椅,3000元钱够吗?
拓展:期中试卷
一、选择题:(请将正确答案的序号填在括号里)每题1分,共5分。
1. 下列算式中,运用乘法交换律使运算简便的是( )。
A、64×101 B、125×66×8 C、352×5×2
2. 一辆汽车一次运大米6吨,增加同样的汽车4辆,运90吨大米要运( )次。
A、3 B、4 C、15
3. 小方3分钟跳绳453下,小明2分钟跳286下,( )的速度快。
A、小方 B、小明 C、无法确法
4. 下面哪个算式是正确的。 ( )
A、99+1×23=100×23 B、201×50=200×50+1 C、75+34+66=75+100
5. 大于0.2而小于0.5的小数有( )。
A、1个 B、2个 C、无数个
二、判断题:(正确的在括号内打“√”,错的打“×”)每题1分,共5分。
1.85乘23与77的和,积是多少?正确列式是:85×23+77( )
2.24×5×75×5=(24+75)×5( )
3.25×4÷25×4=100÷100=l( )
4.56×17+43×17十17的简便算法是(56+43+l)×17( )
5.35×99=35×100+35=3535。( )
三、填空题:(每空2分,共16分)
1. 乘法分配律用字母表示( )。
2. 30与23的和乘46,积是( ),列式为( )。
3. 一个数同0相乘,积是( ),一个数加上( ),还得原数。
4. 根据运算定律在( )填数。
125×(8× )=(125× )×13
四、计算题。(30分)
1. 直接写得数。(12分)
84÷21= 300-50÷5= 760-10×50= 45÷(3×5)=
0÷35= 200÷5÷4= 35-5×6= 58×0+987=
2. 怎样简便就怎样计算(18分)
(1)58×72+28×58
(2)3000÷125÷8
(3)486-137-63
(4)432÷54+17×54
(5)99×78+78
(6)125×24
五、画一画。(9分)
请在平面图上确定以下地方的位置。
1. 食堂在操场东偏北30°方向上约150米处。
2. 大门在操场西偏北45°方向上约200米处。
3. 从操场向南走100米,再向东走200米是沙坑。
六、解决问题。(共35分)
1. 妈妈带600元钱去商场,买了一件羊毛衫用去248元,又买了一个皮包用去252元,应找回多少元?(5分)
2. 学校买来篮球和排球各23个,篮球每个76元,排球每个24元,学校共花多少元?(6分)
3. 小明家距离学校768米,小军每天上学要走12分钟,照这样的速度,他去离家1536米的李红家,要走多少分钟?(6分)
4. 四(1)班同学在社区清理白色垃圾,男生捡到36个饮料瓶,女生捡到的饮料瓶比男生的两倍还多6个,四(1)班同学一共捡到多少个饮料瓶?(6分)
5. 水果店进来36箱香蕉,每箱香蕉重25千克,每千克卖4元,全部卖完可卖多少钱?(6分)
6. 每袋大米重50千克,每车能装160袋,32吨大米需要几车才能一次运完? (6分)
七、附加题。(共10分)
小明今年12岁,爸爸40岁,当爸爸的年龄是女儿5倍的时候,父女两人年龄的和是多少岁?
2023小学数学四年级下册重点知识点篇4
1.由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
2.三角形有3个角、3条边、3个顶点。
3.从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条边叫做三角形的底。
4.为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。
5.三角形具有稳定性。
6.三角形的任意两边的和大于第三边。
7.三角形按角分成:
(1)锐角三角形(三个内角都是锐角的三角形)
(2)直角三角形(有一个角是直角的三角形)
(3)钝角三角形(有一个角是钝角的三角形)
8.三角形按边分成:
(1)等腰三角形(有两条边相等,相等的两条边叫做三角形的腰;有两个角相等,相等的两个角叫做底角。)
(2)等边三角形(三边相等,三个内角相等都是60°)
(3)一般三角形
9.三角形中只能有一个直角;三角形中只能有一个钝角;
三角形中至少有两个锐角,最多有三个锐角。
10.三角形的内角和是180°。
11.最少用2个相同直角三角形可以拼一个平行四边形。最少用3个相同等边三角形可以拼一个梯形。最少用2个相同等边三角形可以拼一个平行四边形。最少用2个相同等腰直角三角形可以拼一个正方形。最少用2个相同直角三角形可以拼一个长方形。
12.无论是什么形状的图形,没有重叠,没有空隙地铺在平面上,就是密铺。
数学万级数的读法法则
1、先读万级,再读个级;
2、万级的数要按个级的读法来读,再在后面加上一个“万”字;
3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
小学数学必背公式
关系表达式
1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度
4、单价×数量=总价总价÷单价=数量总价÷数量=单价
5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、加数+加数=和和-一个加数=另一个加数
7、被减数-减数=差被减数-差=减数差+减数=被减数
8、因数×因数=积积÷一个因数=另一个因数
9、被除数÷除数=商被除数÷商=除数商×除数=被除数
单位间进率
1公里=1千米1千米=1000米
1米=10分米1分米=10厘米1厘米=10毫米
1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米
1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米
1吨=1000千克1千克= 1000克= 1公斤= 1市斤
1公顷=10000平方米1亩=666.666平方米
1升=1立方分米=1000毫升1毫升=1立方厘米
2023小学数学四年级下册重点知识点篇5
运算定律及简便运算
一、加法运算定律:
1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a
2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+b+c
加法的这两个定律往往结合起来一起使用。
如:165+93+35=93+(165+35)依据是什么?
3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-b+c
二、乘法运算定律:
1、乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a
2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。(a×b)×c=a×b×c
乘法的这两个定律往往结合起来一起使用。如:125×78×8的简算
3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这个数相乘,再把积相加。
(a+b)×c=a×c+b×c a-b×c=a×c-b×c
鸡兔问题公式
(1)已知总头数和总脚数,求鸡、兔各多少:
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;
总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;
总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”
解一(100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;
36-22=14(只)…………………………兔。
(答略)
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式
(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数
或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;
总头数-鸡数=兔数。(例略)
(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的'脚数)=兔数;
总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;
总头数-鸡数=兔数。(例略)
(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:
(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”
解一(4×1000-3525)÷(4+15)
=475÷19=25(个)
解二1000-(15×1000+3525)÷(4+15)
=1000-18525÷19
=1000-975=25(个)(答略)
(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费__元,破损者不仅不给运费,还需要赔成本__元……。它的解法显然可套用上述公式。)
(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:
〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;
〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”
解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)……………………………鸡
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)…………………………兔(答略)
鸡兔同笼
1、鸡兔同笼属于假设问题,假设的和最后结果相反。
2、“鸡兔同笼”问题的解题方法
假设法:
①假如都是兔
②假如都是鸡
③古人“抬脚法”:
解答思路:
假如每只鸡、每只兔各抬起一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”。这样,鸡和兔的脚的总数就少了一半。这种思维方法叫化归法。
3、公式:
鸡兔总脚数÷2-鸡兔总数=兔的只数;
鸡兔总数-兔的只数=鸡的只数。
四则运算
1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
5、先乘除,后加减,有括号,提前算
关于“0”的运算
1、“0”不能做除数; 字母表示:a÷0错误
2、一个数加上0还得原数; 字母表示:a+0=a
3、一个数减去0还得原数; 字母表示:a-0=a
4、被减数等于减数,差是0; 字母表示:a-a=0
5、一个数和0相乘,仍得0; 字母表示:a×0=0
6、0除以任何非0的数,还得0; 字母表示:0÷a(a≠0)=0
7、0÷0得不到固定的商; 5÷0得不到商.(无意义)
2023小学数学四年级下册重点知识点篇6
第一单元知识点(四则运算)
1. 在没有括号的算式里,如果只有加、减法或者只有乘除法,都要从左往右按顺序计算。(这是同级运算)
2. 在没有括号的算式里,有乘、除法和加减法,要先算乘除法,在算加减法。(这是两级运算)
3. 算式里有括号,先算括号里面的,在算括号外面的。
4. 加法、减法、乘法和除法统称四则运算。
5. 一个数加上0还得原数,一个数减去0也得原数。
6. 被减数等于减数,差是0。
7. 一个数和零相乘,仍得0。
8. 0除以一个非0的数,还得0。
9. 0不能作除数。
10. 在解决问题时,如果列综合算式,必须用脱式计算。
11. 任何数除以0都得0。(×)因为0不能做除数。
第二单元知识点(观察物体)
1. 如何确定物体所在的位置?
(1)明确方向。
(2)明确距离。
2.根据方向和距离来确定物体的位置。
3.在生活中一般先说物体所在方向离的近(夹角较小)的方位。
4.平面图形的一般画法:
(1)先确定某建筑物的方向。
(2)再确定角度。(测量角度时,哪个方位在前,0刻度线就对准谁。)
(3)最后确定距离。
5.两个城市的位置具有相对性,方向相对,角度和距离不发生改变。例如:甲地在乙地的南偏东30度500米处,则乙地在甲地的北偏西30度500米处。
第三单元知识点(运算定律)
1.两个数相加,两个加数交换位置,和不变。这叫做加法交换律。
用字母表示为:a+b=b+a
2.三个数相加,先把前两个数相加,再加第三个数,或者先把后两个数相加,再加第一个数,和不变。这叫做加法结合律。用字母表示为:(a+b)+c=a+(b+c)
3.两个数相乘,交换两个因数的位置,积不变。这叫做乘法交换律。
用字母表示为:a×b=b×a
4.三个数相乘,先让前两个数相乘,再乘第三个数,或者先让后两个数相乘,再乘第一个数,积不变。这叫做乘法结合律。
用字母表示为:(a×b) ×c=a×(b×c)
5.两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。用字母表示为:(a+b)×c=a×c+b×c
6. 类似于乘法分配律的简便公式;
(a-b)×c=a×c-b×c
(a+b)÷c=a÷c+b÷c
(a-b)÷c=a÷c-b÷c
7.从一个数里连续减去两个数,等于从这个数里减去另两个数的和。这叫做减法的运算性质。用字母表示为:a-b-c=a-(b+c)
8.在一个带有括号的算式中,括号前面是“+”,去掉括号后,括号里面的运算符号不发生改变。用字母表示为:a+(b+c)=a+b+c a+(b-c)=a+b-c
括号前面是“-”,去掉括号后,括号里面的运算符号发生了变化,“+”变“-”, “-”变“+”。 用字母表示为:a-(b+c)=a-b-c a-(b-c)=a-b+c
9.一个数连续除以两个数,等于这个数除以另两个数的积。这时除法的运算性质。用字母表示为:a÷b÷c=a÷(b×c)
10. 在一个带有括号的算式中,括号前面是“×”,去掉括号后,括号里面的运算符号不发生改变。用字母表示为:
a×(b×c)=a×b×c a×(b÷c)=a×b÷c
括号前面是“÷”,去掉括号后,括号里面的运算符号发生了改变。用字母表示为:a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c
12. 另两种简便方法:
(1) 把一个因数改写成两个一位数相乘的形式。
(2) 把一个因数改写成两个数相除的形式,然后变成乘除混和运算。
2023小学数学四年级下册重点知识点篇7
1、亿以内数的读数方法。
含有个级、万级和亿级的数,必须先读亿级,再读万级,最后读个级。(即从高位读起)亿级或万级的数都按个级读数的`方法,在后面要加上亿或万。在级末尾的零不读,在级中间的零必须读。中间不管连续有几个零,只读一个零。
2、亿以内数的写数方法。
从高位写起,按照数位的顺序写,中间或末尾哪一位上一个单位也没有,就在那一位上写0。
3、比较数大小的方法。
多位数比较大小,如果位数不同,那么位数多的这个数就大,位数少的这个数就小。如果位数相同,从左起第一位开始比起,哪个数字大,哪个数就大。如果左起第一位上的数相同,就开始比第二位……直到比出大小为止。
2023小学数学四年级下册重点知识点篇8
1、加法运算定律:①加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a;②加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+(b+c);③加法的这两个定律往往结合起来一起使用。
2、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-(b+c)。
3、乘法运算定律:①乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a;②乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。(a×b)×c=a×(b×c),乘法的`这两个定律往往结合起来一起使用。③乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。(a+b)×c=a×c+b×c。
4、连除的性质:一个数连续除以两个数,等于除以这两个数的积。a÷b÷c=a÷(b×c)。