小学数学应用题解答方法-分数和百分数的应用

碧瑶 1172分享

  对于即将到来的期末考试,不知道各位同学现在有没有进入到复习的阶段,只要掌握了正确的学习技巧和解答方法,取得好成绩也是比较容易的,下面一起来看下小学数学的解答技巧。

  分数和百分数的应用

  1 分数加减法应用题:

  分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。

  2分数乘法应用题:

  是指已知一个数,求它的几分之几是多少的应用题。

  特征:已知单位“1”的量和分率,求与分率所对应的实际数量。

  解题关键:准确判断单位“1”的量。找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。

  3 分数除法应用题:

  求一个数是另一个数的几分之几(或百分之几)是多少。

  特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,也就是求他们的倍数关系。

  解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和单位一的量作比较,谁就作被除数。

  甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。

  甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数 。

  已知一个数的几分之几(或百分之几 ) ,求这个数。

  特征:已知一个实际数量和它相对应的分率,求单位“1”的量。

  解题关键:准确判断单位“1”的量把单位“1”的量看成x根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际

  数量。

  4 出勤率

  发芽率=发芽种子数/试验种子数×100%

  小麦的出粉率= 面粉的重量/小麦的重量×100%

  产品的合格率=合格的产品数/产品总数×100%

  职工的出勤率=实际出勤人数/应出勤人数×100%

  5 工程问题:

  是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

  解题关键:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况,灵活运用公式。

  数量关系式:

  工作总量=工作效率×工作时间

  工作效率=工作总量÷工作时间

  工作时间=工作总量÷工作效率

  工作总量÷工作效率和=合作时间

  6 纳税

  纳税就是把根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

  缴纳的税款叫应纳税款。

  应纳税额与各种收入的(销售额、营业额、应纳税所得额 ……)的比率叫做税率。

  * 利息

  存入银行的钱叫做本金。

  取款时银行多支付的钱叫做利息。

  利息与本金的比值叫做利率。

  利息=本金×利率×时间 。

  数学知识点-年龄问题

  【含义】

  这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。

  【数量关系】

  年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。

  【解题思路和方法】

  可以利用“差倍问题”的解题思路和方法。

  例1

  爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢?

  解

  35÷5=7(倍)

  (35+1)÷(5+1)=6(倍)

  答:今年爸爸的年龄是亮亮的7倍,

  明年爸爸的年龄是亮亮的6倍。

  例2

  母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍?

  解

  (1)母亲比女儿的年龄大多少岁?37-7=30(岁)

  (2)几年后母亲的年龄是女儿的4倍?30÷(4-1)-7=3(年)

  列成综合算式(37-7)÷(4-1)-7=3(年)

  答:3年后母亲的年龄是女儿的4倍。

  例3

  甲对乙说:“当我的岁数曾经是你现在的岁数时,你才4岁”。乙对甲说:“当我的岁数将来是你现在的岁数时,你将61岁”。求甲乙现在的岁数各是多少?

  解

  这里涉及到三个年份:过去某一年、今年、将来某一年。列表分析:

  过去某一年 今年 将来某一年

  甲 □岁 △岁 61岁

  乙 4岁 □岁 △岁

  表中两个“□”表示同一个数,两个“△”表示同一个数。

  因为两个人的年龄差总相等:□-4=△-□=61-△,也就是4,□,△,61成等差数列,所以,61应该比4大3个年龄差,

  因此二人年龄差为(61-4)÷3=19(岁)

  甲今年的岁数为△=61-19=42(岁)

  乙今年的岁数为□=42-19=23(岁)

  答:甲今年的岁数是42岁,乙今年的岁数是23岁。


数学学习相关文章:

1.该如何掌握好数学的学习方法与技巧

2.幼儿学数学

3.如何在数学学习中进行深层阅读

4.数学的学习方法你知道都有哪些吗

5.该如何自觉的学习数学并爱上数学

    745860