六年级数学鼎尖教案文案
教学活动过程应当依据教学目标的性质。对于不同的教学目标,教师要设计不同的教学活动。那么教师应该怎么写出一个好教案呢?今天小编在这里整理了一些六年级数学鼎尖教案2021文案,我们一起来看看吧!
六年级数学鼎尖教案2021文案1
一、教学内容分析
本节课是在学生认识了比,理解了比并能用比的知识解释一些简单的生活问题的基础上进行的,又为学生后面学习比的应用打下基础。
二、学生分析
学生对商不变的性质以及分数的基本性质已经熟练的掌握,知识的迁移学生应该很好理解。
三、学习目标(以学生为主语)
1、在实际情境中,体会化简比的必要性,进一步体会比的意义。
2、会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。
3、通过教学培养学生的抽象概括能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。
教学重难点:掌握化简比的方法,会把一个比化成最简单的整数比。
四、教学活动(此环节可以是课堂实录)
1.导入
问题:淘气和笑笑各自调制了一杯蜂密水,请问哪杯水更甜?
过程:互相讨论,发表看法,如何比较。(学生发言老师板书)
小结:比较的结果一样甜,分数可以约分比也可以化简。
2.新授
①引入 “最简单整数比”的概念。
最简单的整数比就是比的前项、后项是互质数,像6∶5就是最简单的整数比。
②你还能举一些最简单的整数比的例子吗?如果我们能把比都化成最简单的整数比,就容易计算了!
③出示问题尝试并讨论:
12:8 0.7:0.8 2/5:1/4
1.能不能把整数比化简成最简单的整数比?如何化?
2.能不能把分数比化简成最简单的整数比?如何化?
3.能不能把小数比化简成最简单的整数比?如何化?
④交流
1.化简整数比的方法是什么?(先化成分数,再约分成最简分数,最后把最简分数转化成比的形式。)(或利用商不变的性质)
2.怎样把分数比化成最简单的整数比?(先转化成除法,再用最简分数表示结果,最后把最简分数转化成比的形式)
3.如何把小数比化简成最简单的整数比?(先化成整数比,再化简成最简单的整数比)
⑤介绍比的基本性质
3.练习
1、P51页化简下面各比。(独立完成,集体评讲)
2、练习:做书上练一练的第1、2题。
五、教师反思
比与除法、分数之间有如此密切的联系,利用除法中商不变的性质或分数的基本性质来化简比,这样的教学对学生掌握知识来说比较顺利,但在教学过程中要注重细节的指导,还要相信学生能根据以前的知识找到适合的化简方法,充分给予学生更大的空间。
六年级数学鼎尖教案2021文案2
教学目标:
1、在实际情境中,体会化简比的必要性,进一步体会比的意义。
2、会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。
教学重难点:
1、运用商不变的性质或分数的基本性质化简比。
2、解决一些简单的实际问题。
学习目标:
1、理解比的意义,感受比与除法、分数之间的关系,体会化简比的必要性。
2、学会化简比的方法。
教学准备:
ppt课件
教学过程:
一、导入
(一)导情趣(抢答式复习)
1、 60÷10 = 600÷( )= ( )÷1 = 0.6÷( )
说一说:解答这两道题你用的是什么知识?
(除法中商不变的性质和分数的基本性质)
除法中商不变的性质是什么?分数的基本性质又是什么?
2、比与除法、分数有什么关系?
(用字母表示:a:b=a÷b=a/b)
(二)导目标
除法中有商不变的性质,分数中有分数的基本性质,那么比有什么性质呢?今天我们就一起来研究——比的化简。(板书:比的化简)
下面请同学们一起来看一看本节课的学习目标。(课件出示目标)
学习目标:
1、理解比的意义,感受比与除法、分数之间的关系。
2、体会化简比的必要性,学会化简比的方法。
二、分组自学目标1
(出示情景图)
淘气调制了一杯蜂蜜水,用了40毫升蜂蜜、360毫升的水。笑笑也调制了一杯蜂蜜水,用了2小杯蜂蜜、18小杯水。同学们想一想哪杯水更甜?
1、导学法
估一估、想一想、算一算
2、小组互相讨论,发表看法。
40 :360 2:18
3、质疑问难
直接比较他们俩谁调制的蜂蜜水更甜还是有困难的,那么你能不能联系比与除法和分数的关系,来想办法解决呢?小组讨论一下,该如何来计算并比较呢?
4、各组自学,交流汇报。
你们运用了什么好方法?都学会了什么?
学生边汇报,老师边板书。
40:360=40/360=1/9=1:9
2:18=2/18=1/9=1:9
5、小结:比较的结果一样甜,由此可见,比的化简对我们解决生活中的实际问题是有很大帮助的,从中我们也体会到了化简比是有必要的。那么到底什么样的比才是最简单的整数比呢?我们来看大屏幕。
6、导入“最简单整数比”的概念。
比的前项与后项只有公因数1,这样的整数比就是最简整数比。也就是说,
最简单的整数比就是比的前项、后项是互质数,像6∶5就是最简单的整数比。
你能列举出几个最简整数比吗?(指名回答)
7、同学们,你们想知道这些最简单的整数比是用什么方法化简得到的吗?下面我们就来学习第二个目标。(出示目标)
三、分组自学目标2
1、出示问题:化简比
24:42 0.7:0.8 2/5:1/4
2、导学法
学法指导:
每组任选一题、分析比的类型、个人独立解答、交流解题依据、组内总结方法
3、各小组自学,交流讨论。
4、汇报交流
你们组是用什么方法学习的?是怎样学的?都学会了什么?
(指名板书计算过程)
5、指导总结化简比的方法
(1)化简整数比的方法是什么?(先化成分数,再约分成最简分数,最后把最简分数转化成比的形式。)(或利用商不变的性质)
(2)怎样把分数比化成最简单的整数比?(先转化成除法,再用最简分数表示结果,最后把最简分数转化成比的形式)
(3)如何把小数比化简成最简单的整数比?(先化成整数比,再化简成最简单的整数比)
6、智力大比拼:总结比的基本性质
你能根据商不变的性质和分数的基本性质概括出比的基本性质吗?
比的前项和后项同时乘或除以相同的数(0除外),比值不变。
利用比的基本性质也可以化简比:
14:21 = (14÷7) :(21÷7) =2:3
7、老师小结:看来,化简比的方法不,不过都有一个共同目标:化简成最简单的整数比;那么化简比与求比值有什么区别呢?(课件)
四、练习(课件)
1、化简比:
15:21 0.12:0.4 2/3:1/2 1:2/3
2、连一连
3、判断
4、写出各杯中糖与水的质量比。
5、解决问题
五、回顾学习目标,进行本课总结
回顾这节课,你有什么收获?利用所学的比,你能解决生活中什么样的问题?
小结:生活中有很多问题需要通过化简比来解决,因此我们必须学会根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简比。
板书:
比的化简
a:b=a÷b=a/b
40:36=40/360=1/9=1:9
2:18=2/18=1/9=1:9
六年级数学鼎尖教案2021文案3
教学内容:北师大版小学数学第十一册P52的内容及P53的相关练习
教学目标:
1、在实际 情境中体会化简比的必要性,进一步体会比的含义。
2、会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。
3、感受数学知识的内在联系。
教学重点:比的化简的方法。
教学难点:运用比的化简,解决一些简单的实际问题。
教学过程:
一、复习铺垫,激趣引新。
(一)复习铺垫。
1、比的意义以及比的各部分的名称。
师:什么叫比?请你举个例子。(生说完举例比如4:5 8:9)
师:师举一个例子问“:”叫?4呢?5呢?
2、比与除法、分数之间的联系与区别。
(1)在除法中,我们学过了商不变性质,谁还记得?
在分数中,分数的基本性质又是怎样?
(2)师:你知道比与除法、分数之间有什么联系与区别?
[设计意图:比的化简是在学生已经学习分数的意义以及分数与除法关系的基础上进行学习的,通过复习这部分知识有利于新课的认知。]
(二)激趣,揭示课题。
过渡:昨天我们学习了《生活中的比》,今天我们要来学习《比的化简》。比应怎样化简?它与分数的基本性质、除法中的商不变性质有什么关系?请同学们来说一说。(某某同学说的是否正确呢,学完今天的知识你们就知道了。)
[设计意图:通过老师激趣、让学生猜想,激发学生的好奇心、求知欲,为学生主动探究加点动力。]
二、探索新知。
活动一:学一学。
课件出示主题图:淘气和笑笑的对话。
学生带着思考题,看书学习。(思考题①有什么方法比较哪杯水更甜?②如何化简比?③比的化简与分数的约分有什么区别?
[设计意图:高年级学生自学能力的培养非常重要,让学生带着思考题自学看书,学习有目的性、针对性,提高学生自学的质量。]
活动二:说一说。(反馈看书、自学情况)
①学生汇报比较方法,师根据学生的回答板书。
②教学比的化简。40:360= 40/360 = 1/9 =1:9
2:18=2/18= 1/9 =1:9
③比较:(生说,师重点强调,突出对应思想:A、 比的前项是分子,后项是分母,然后约分。B、约分是写成最简分数,化简比到最后应化成最简整数比。C、引导学生小结化简比的方法。
[设计意图:根据思考题中的3个问题展开,让学生逐一说一说,任务明确、思路清晰,学生忙而有序,能充分调动学生的学习主动性、积极性。]
活动三:化简比。
14:21 0.5:2.5 2/9 :1/3
(1)请三位同学上去板演,其他做在练习本上。
(2)反馈,集体订正:请这三位同学说说,你是怎么化简的?
(3)请同学们观察这3道题,带着思考讨论题小组讨论(先思考再讨论
:①3道题有什么不同点,它们各用什么方法进行化简的?②1、2题化简比的过程中,比的前项和后项如何变化的?请小组讨论后回答,师根据学生的回答小结:
整数比:可以根据商不变的性质或像分数约分那样进行化简。
小数比:可以先利用商不变的性质将其转化为整数比,然后在化简
分数比:可以前项除以后项,再根据比值写出最简单的整数比。
相同点:把比的前项和后项同时除以或乘以相同的数,比值不变。
(4)回顾:比有什么性质,现在谁知道?(生说师课件出示比的基本性质)
[设计意图:在学生初步理解了比的化简的方法基础上让学生练习三种不同情况的化简比,加深学生对比的化简方法的理解和运用。]
活动四:练一练。
1、化简比。15:21 0.12:0.4 2/3 : 1/2 1:2/3
2、连一连,完成P53的第1题。
3、大正方形边长是4厘米,小正方形边长是3厘米。
大、小正方形边长的比是( ),比值是( );大、小正方形周长的比是( ),比值是( );大、小正方形面积的比是( ),比值是( )。
[设计意图:通过练一练,提高学生综合运用知识,解决实际问题的能力,实现三维目标的整合。]
活动五:课堂总结。
今天你学会了什么知识?
以下是数学论坛陈春艳的修改:
要求:以下为东山县樟塘中心小学 林敏卿老师的教学设计《比的化简》,欢迎大家就目标确定、教法选择、环节设计、作业设置等方面,提出建议或评点 。
教学内容:北师大版小学数学第十一册P52的内容及P53的相关练习
教学目标:
1、在实际 情境中体会化简比的必要性,进一步体会比的含义。
2、会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。
3、感受数学知识的内在联系。 加了一条目标,目的是什么?
教学重点:比的化简的方法。 会用商不变的性质或分数的基本性质化简比
教学难点:运用比的化简,解决一些简单的实际问题。
教学过程:
一、复习铺垫,激趣引新。
(一)复习铺垫。
1、比的意义以及比的各部分的名称。
师:什么叫比?请你举个例子。(生说完举例比如4:5 8:9) 说一个生活中的比比教合适,这么问有点太抽象。
师:师举一个例子问“:”叫?4呢?5呢?
2、比与除法、分数之间的联系与区别。
(1)在除法中,我们学过了商不变性质,谁还记得?
在分数中,分数的基本性质又是怎样?
(2)师:你知道比与除法、分数之间有什么联系与区别? 是不是问题出现太早?
[设计意图:比的化简是在学生已经学习分数的意义以及分数与除法关系的基础上进行学习的,通过复习这部分知识有利于新课的认知。]
(二)激趣,揭示课题。
过渡:昨天我们学习了《生活中的比》,今天我们要来学习《比的化简》。比应怎样化简?它与分数的基本性质、除法中的商不变性质有什么关系?请同学们来说一说。(某某同学说的是否正确呢,学完今天的知识你们就知道了。)
[设计意图:通过老师激趣、让学生猜想,激发学生的好奇心、求知欲,为学生主动探究加点动力。]
二、探索新知。
活动一:学一学。
课件出示主题图:淘气和笑笑的对话。
学生带着思考题,看书学习。(思考题①有什么方法比较哪杯水更甜?②如何化简比?③比的化简与分数的约分有什么区别?
[设计意图:高年级学生自学能力的培养非常重要,让学生带着思考题自学看书,学习有目的性、针对性,提高学生自学的质量。]
活动二:说一说。(反馈看书、自学情况)
①学生汇报比较方法,师根据学生的回答板书。
②教学比的化简。40:360= 40/360 = 1/9 =1:9
2:18=2/18= 1/9 =1:9
③比较:(生说,师重点强调,突出对应思想:A、 比的前项是分子,后项是分母,然后约分。B、约分是写成最简分数,化简比到最后应化成最简整数比。C、引导学生小结化简比的方法。
[设计意图:根据思考题中的3个问题展开,让学生逐一说一说,任务明确、思路清晰,学生忙而有序,能充分调动学生的学习主动性、积极性。]
活动三:化简比。
14:21 0.5:2.5 2/9 :1/3
(1)请三位同学上去板演,其他做在练习本上。
(2)反馈,集体订正:请这三位同学说说,你是怎么化简的?
(3)请同学们观察这3道题,带着思考讨论题小组讨论(先思考再讨论
:①3道题有什么不同点,它们各用什么方法进行化简的?②1、2题化简比的过程中,比的前项和后项如何变化的?请小组讨论后回答,师根据学生的回答小结:
整数比:可以根据商不变的性质或像分数约分那样进行化简。
小数比:可以先利用商不变的性质将其转化为整数比,然后在化简
分数比:可以前项除以后项,再根据比值写出最简单的整数比。
相同点:把比的前项和后项同时除以或乘以相同的数,比值不变。 说的不准确。“比的前项和后项同时乘上或除以相同的数(0除外),比值不变。”一定注意强调“0除外”。
(4)回顾:比有什么性质,现在谁知道?(生说师课件出示比的基本性质)
[设计意图:在学生初步理解了比的化简的方法基础上让学生练习三种不同情况的化简比,加深学生对比的化简方法的理解和运用。]
活动四:练一练。
1、化简比。15:21 0.12:0.4 2/3 : 1/2 1:2/3
2、连一连,完成P53的第1题。
3、大正方形边长是4厘米,小正方形边长是3厘米。
大、小正方形边长的比是( ),比值是( );大、小正方形周长的比是( ),比值是( );大、小正方形面积的比是( ),比值是( )。
[设计意图:通过练一练,提高学生综合运用知识,解决实际问题的能力,实现三维目标的整合。]
活动五:课堂总结。
今天你学会了什么知识?
六年级数学鼎尖教案2021文案4
教学内容:比例的意义
教学目标:使学生理解比例的意义,能应用比例的意判断两个比能否成比例。
教学重点:比例的意义。
教学难点:找出相等的比组成比例。
教学过程:
一、旧知铺垫
什么是比?什么叫比值?怎样求比值?
2.求下面各比的比值。
12:16
3/4:1/8
4.5:2.7
二、探索新知
1.教学例1。
(1)实物投影呈现课文情境图。(不出现国旗长、宽数据)
①说一说各幅图的情景。
②图中有什么相同之处?
(2)这几面国旗的形状一样,但长和宽却各不相同。请大家算一算它们长和宽的比,看看能发现什么?
(3)(指教室里的国旗)这面国旗的长和宽的比值是多少?
学生回答教师板书:
60:40=3/2
操场上的国旗的长和宽的比值是多少?与这面国旗有什么关系?
学生回答长、宽比值。
2.4:1.6=3/2
两面国旗的长和宽的比值相等。
板书:2.4:1.6=60:40
也可以写成:2.4/1.6.=60/40
(4)找比例。
师:在这四面国旗的尺寸中,你还能找出哪些比可以组成等式?
如:5:10/3=15:10
5:10/3=2.4:1.6
15?10=2.4/1.6
15/10=60/40
(5)什么是比例?
表示两个比相等的式子叫做比例。
(6)1:2是是比例吗?你能把它组成一个比例吗?
(7)完成教材“做一做”。
第1题。
什么样的比可以组成比例?
把组成的比例写出来。
说一说你是怎么找的。
同学之间互相交流,检验各自所写的比例。
第2题。
学生独立写比例,看谁写得多。
同学之间互相交流,说一说你是怎么写的,一共可以写多少个不同的比例。
3.课堂小结。
(1)什么叫做比例?
(2)一个比例式可以改写成几个不同的比例式?
三、巩固练习
完成课文练习六第1~3题。
第一课时教学反思
复习环节发现部分学生对求比值出现知识遗忘。特别是对于如何求两个小数或两个分数的比值,而这部分知识是本课判断能否组成比例的关键,所以在复习中必须舍得花时间,夯实基础后才能继续推进新授学习。
在总结比例概念的时机上,我对教材稍做修改。因为仅从一个例子就要求学生概括出比例的含义,对他们而言难度较大。因此,我在教学完2.4:16.=60:40后,请学生们把四面国旗长和宽的比,也根据比值相等的组成等式.在此基础上再提问“怎样的式子叫做比例?”明显感觉学生们能够根据实践经验较准确地抽象出概念。同时,建议在巩固练习中补充概念的判断题,如:6:10和9:15,(虽然两个比的比值相等,但因为没有组成式子,所以不是比例。)
做一做第2题隐含着初中相似三角形对应边成比例的性质,教参给出了4个比例,“2∶4 = 1.5∶3、4∶2 = 3∶1.5、2∶1.5 = 4∶3、1.5∶2 = 3∶4。”其实应该共可写出8个比例。交换等号两边的比,还可以组成4个不同的比例1.5:3=2:4、3:1.5=4:2、4:3=2:1.5、 3:4=1.5:2。为什么仅仅相换了等号两边的比,就应该算作不同的比例呢?(必须结合比例各部分的名称来解释)怎样才能将4个数,既不重复又不遗漏地写出8个比例来呢?(我觉得在学习完比例的基本性质后更容易理解)。因此,将此题下移至比例的基本性质一课完成。
练习六第1题必须特别关注,因为其中第2、4小题体现了正比例的特点。因此,在教学中,我不仅要求学生判断“相对应的两个量的比能否组成比例”,还补充要求他们回答相应两个量的比值表示的含义。如第2小题,有的学生用箱子数量:质量,那么比值的含义应该为每千克的箱子是多少个。也有的学生用质量:箱子数量,那么比值的含义则为每个条子的质量。通过练习,强化数量关系,为后继学习作好铺垫。
练习六第2题,如果将4个数两两排列求比值,有12种情况,再从中找出比值相等的组成比例太麻烦,有没有比较方便快捷的方法呢?有!孩子们发现:将的数与第二大的数组成比;将剩下的两个数也按大数比小数组成比,就能够较快判断出所组成的比能否组成比例。
六年级数学鼎尖教案2021文案5
教学目标:
1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。
2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。
3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。
教学重、难点:负数的意义。
教学过程:
一、谈话交流:谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?
二、教学新知
1.表示相反意义的量。
(1)引入实例。
谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。
①六年级上学期转来6人,本学期转走6人。
②张阿姨做生意,二月份盈利1500元,三月份亏损200元。
③与标准体重比,小明重了2.5千克,小华轻了1.8千克。
④一个蓄水池夏季水位上升米,冬季水位下降米。
指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)
(2)尝试。怎样用数学方式来表示这些相反意义的量呢?请同学们选择一例,试着写出表示方法。……
(3)展示交流。……
2.认识正、负数。
(1)引入正、负数。谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6-6),这种表示方法和数学上是完全一致的。
介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六
“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。
(2)试一试。请你用正、负数来表示出其它几组相反意义的量。
写完后,交流、检查。
3.联系实际,加深认识。
(1)说一说存折上的数各表示什么?(教学例2。)
(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。①同桌交流。
②全班交流。根据学生发言板书。
这样的正、负数能写完吗?(板书:……)
强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。
4.进一步认识“0”。
(1)看一看、读一读。
谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(课件出示)。温度中有正数也有负数,请把负数读出来。
(2)找一找、说一说。我们来看首都北京当天的温度,“-5℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5℃又表示什么?你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)为什么?
现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)
说一说,你怎么这么快就找到了?
(课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)你能很快找到12℃、-3℃吗?
(3)提升认识。
请学生观察温度计,说一说有什么发现?在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)
“0”是正数,还是负数呢?
在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。
(4)总结归纳。
如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:(完善板书。)
5.练一练。读一读,填一填。(练习一第1题。)
6.出示课题。
同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。
7.负数的历史。(1)介绍。
其实,负数的产生和发展有着悠久的历史,我们一起来了解一下(课件配音播放):
“中国是世界上最早认识和运用负数的国家,早在2000多年前,我国古代数学著作《九章算术》中对正数和负数就有了记载。魏朝数学家刘徽在该书的注文中则更进一步地概括了正、负数的意义:‘两算得失相反,要令正负以名之。’古代用算筹表示数,这句话的意思是:‘两种得失相反的数,分别叫做正数和负数。’并且规定用红色算筹表示正数,黑色算筹表示负数。由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外对负数的认识经历了曲折的过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。但比中国晚了数百年!”
(2)交流。
简单了解了负数的历史,你有什么感受?
三、练习应用:
今天,负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。
课件逐一出示:
1.表示海拔高度。(“做一做”第2题。)
通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43米,可以记作_____________;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作_____________。
2.表示温度。(练习一第2题。)
月球表面白天的平均温度是零上126℃,记作_________℃,夜间的平均温度为零下150℃,记作_____________℃。
3.(出示电梯按钮图)小红的家在五楼,储藏室在地下一楼。如果她要回家,按哪个按钮?如果到储藏室取东西呢?
4.表示时间。(练习一第3题。)
“净含量:10±0.1kg”表示什么意思?
四、总结延伸
1.学生交流收获。
2.总结。简要、具体地评价学生的收获,并强调:关于负数,生活中还有更广泛的应用;走进负数,还有更多的知识等待我们去探索,相信同学们在今后的生活和学习中会有更多的收获。
课后作业:1.完成数练第1页。