七年级数学知识点
推荐文章
七年级数学知识点提纲
各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。下面是小编给大家整理的一些七年级数学知识点,希望对大家有所帮助。
七年级数学知识点
单项式与多项式
1、没有加减运算的整式叫做单项式。(数字与字母的积---包括单独的一个数或字母)
2、几个单项式的和,叫做多项式。其中每个单项式叫做多项式的项,不含字母的项叫做常数项。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。
单项式
1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
多项式
1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数的项的次数,叫做这个多项式的次数。
整式
1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
七年级数学知识点汇总
一、正数和负数
1、以前学过的0以外的数前面加上负号-的数叫做负数。
2、以前学过的0以外的数叫做正数。
3、零既不是正数也不是负数,零是正数与负数的分界。
4、在同一个问题中,分别用正数和负数表示的量具有相反的意义。
二、有理数
1、正整数、0、负整数统称整数,正分数和负分数统称分数。
2、整数和分数统称有理数。
3、把一个数放在一起,就组成一个数的集合,简称数集。
三、数轴
1、规定了原点、正方向、单位长度的直线叫做数轴。
2、数轴的作用:所有的有理数都可以用数轴上的点来表达。
3、注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
4、性质:(1)在数轴上表示的两个数,右边的数总比左边的数大。
(2)正数都大于零,负数都小于零,正数大于负数。
四、相反数
1、只有符号不同的两个数叫做互为相反数。
2、数轴上表示相反数的两个点关于原点对称。
3、零的相反数是零。
五、绝对值
1、一般地,在数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。
2、一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
六、有理数的大小比较
1、正数大于0,0大于负数,正数大于负数。
2、两个负数,绝对值大的反而小。
七、有理数的加法
1、有理数的加法法则
(1)号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
(3)互为相反数的两个数相加得零。
(4)一个数同零相加,仍得这个数。
2、有理数加法的运算律
(1)加法交换律:两个数相加,交换加数的位置,和不变。即a+b=b+a
(2)加法结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。即(a+b)+c=a+(b+c)
八、有理数的减法
1、有理数减法法则
减去一个数,等于加这个数的相反数。即a-b=a+(-b)
九、有理数的乘法
1、有理数的乘法法则
(1)两数相乘,同号得正,异号得负,并把绝对值相乘。
(2)任何数同0相乘,都得0。
(3)乘积是1的两个数互为倒数。
(4)几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
(5)几个数相乘,有一个因数为零,积就为零。
2、有理数的乘法的运算律
(1)乘法交换律:两个数相乘,交换因数的位置,积相等。即ab=ba
(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。即(ab)c=a(bc)
(3)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。即a(b+c)=ab+ac
十、有理数的除法
1、有理数除法法则
(1)除以一个不等于0的数,等于乘这个数的倒数。
(2)零不能作除数。
(3)两数相除,同号得正,异号得负,并把绝对值相除。
(4)0除以任何一个不等于0的数,都得0。
七年级数学知识点总结
代数
1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.
2.列代数式的几个注意事项(数学规范):
(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;
(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;
(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;
(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.
3.几个重要的代数式:(m、n表示整数)
(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;
(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;
(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;
(4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.