初中下数学知识点总结人教版
学习必须与实干相结合。每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。下面是小编给大家整理的一些数学知识点总结的学习资料,希望对大家有所帮助。
初二下册数学知识点总结人教版
函数及其相关概念
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
新人教版初一下册数学知识点总结归纳
相交线与平行线
一、知识网络结构
二、知识要点
1、在同一平面内,两条直线的位置关系有 两 种: 相交 和 平行 , 垂直 是相交的一种特殊情况。
2、在同一平面内,不相交的两条直线叫 平行线 。如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。
3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是
邻补角。邻补角的性质: 邻补角互补 。如图1所示, 与 互为邻补角,
与 互为邻补角。 + = 180°; + = 180°; + = 180°;
+ = 180°。
4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。对顶角的性质:对顶角相等。如图1所示, 与 互为对顶角。 = ;
= 。
5、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直,
其中一条叫做另一条的垂线。如图2所示,当 = 90°时, ⊥ 。
垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
性质3:如图2所示,当 a ⊥ b 时, = = = = 90°。
点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。
6、同位角、内错角、同旁内角基本特征:
①在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这样
的两个角叫 同位角 。图3中,共有 对同位角: 与 是同位角;
与 是同位角; 与 是同位角; 与 是同位角。
②在两条直线(被截线) 之间 ,并且在第三条直线(截线)的 两侧 ,这样的两个角叫 内错角 。图3中,共有 对内错角: 与 是内错角; 与 是内错角。
③在两条直线(被截线)的 之间 ,都在第三条直线(截线)的 同一旁 ,这样的两个角叫 同旁内角 。图3中,共有 对同旁内角: 与 是同旁内角; 与 是同旁内角。
人教版初一下册数学知识点
实数的分类
1、按定义分类: 2.按性质符号分类:
注:0既不是正数也不是负数.
【知识点二】实数的相关概念
1.相反数
(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.
(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.
(3)互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.
2.绝对值 |a|≥0.
3.倒数 (1)0没有倒数 (2)乘积是1的两个数互为倒数.a、b互为倒数 .
4.平方根
(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.
(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作 .
5.立方根
如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.
【知识点三】实数与数轴
数轴定义: 规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.
【知识点四】实数大小的比较
1.对于数轴上的任意两个点,靠右边的点所表示的数较大.
2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.
3.无理数的比较大小: