七年级数学教案人教版例文

学俊1252分享

反映教师在整个教学中的总体设计和思路,是衡量教师教学水平高低,尤其是教学态度认真与否的重要尺度。那么应该怎么写好教案呢?今天小编在这里给大家分享一些有关于七年级数学教案人教版2021例文,希望可以帮助到大家。

七年级数学教案人教版2021例文1

教学目标

1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;

2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;

3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;

4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;

5.本节课通过行程问题说明法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。

教学建议

(一)重点、难点分析

本节教学的重点是依据法则熟练进行运算。难点是法则的理解。

(1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。

(2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。

(3)如果是同号相加,取相同的符号,并把绝对值相加。如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。一个数与0相加,仍得这个数。

(二)知识结构

(三)教法建议

1.对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。

2.法则是规定的,而教材开始部分的行程问题是为了说明加法法则的合理性。

3.应强调加法交换律“a+b=b+a”中字母a、b的任意性。

4.计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。不要盲目动手,应该先仔细观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。

5.可以给出一些类似“两数之和必大于任何一个加数”的判断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。

6.在探讨导出法则的行程问题时,可以尝试发挥多媒体教学的作用。用动画演示人或物体在同一直线上两次运动的过程,让学生更好的理解有理数运算法则。

教学设计示例

(第一课时)

教学目的

1.使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行运算.

2.通过运算,培养学生的运算能力.

教学重点与难点

重点:熟练应用法则进行加法运算.

难点:法则的理解.

教学过程

(一)复习提问

1.有理数是怎么分类的?

2.有理数的绝对值是怎么定义的?一个有理数的绝对值的几何意义是什么?

3.有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明?

-3与-2;|3|与|-3|;|-3|与0;

-2与|+1|;-|+4|与|-3|.

(二)引入新课

在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学运算.

(三)进行新课 (板书课题)

例1 如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?

两次行走后距原点0为8米,应该用加法.

为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:

1.同号两数相加

(1)某人向东走5米,再向东走3米,两次一共走了多少米?

这是求两次行走的路程的和.

5+3=8

用数轴表示如图

从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米.

可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和.

(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?

显然,两次一共向西走了8米

(-5)+(-3)=-8

用数轴表示如图

从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了-8米.

可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和.

总之,同号两数相加,取相同的符号,并把绝对值相加.

例如,(-4)+(-5),……同号两数相加

(-4)+(-5)=-( ),…取相同的符号

4+5=9……把绝对值相加

∴ (-4)+(-5)=-9.

口答练习:

(1)举例说明算式7+9的实际意义?

(2)(-20)+(-13)=?

(3)

2.异号两数相加

(1)某人向东走5米,再向西走5米,两次一共向东走了多少米?

由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米.

5+(-5)=0

可知,互为相反数的两个数相加,和为零.

(2)某人向东走5米,再向西走3米,两次一共向东走了多少米?

由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米.

就是 5+(-3)=2.

(3)某人向东走3米,再向西走5米,两次一共向东走了多少米?

由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米.因此,两次一共向东走了-2米.

就是 3+(-5)=-2.

请同学们想一想,异号两数相加的法则是怎么规定的?强调和的符号是如何确定的?和的绝对值如何确定?

最后归纳

绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.

例如(-8)+5……绝对值不相等的异号两数相加

8>5

(-8)+5=-( )……取绝对值较大的加数符号

8-5=3 ……用较大的绝对值减去较小的绝对值

∴(-8)+5=-3.

口答练习

用算式表示:温度由-4℃上升7℃,达到什么温度.

(-4)+7=3(℃)

3.一个数和零相加

(1)某人向东走5米,再向东走0米,两次一共向东走了多少米?

显然,5+0=5.结果向东走了5米.

(2)某人向西走5米,再向东走0米,两次一共向东走了多少米?

容易得出:(-5)+0=-5.结果向东走了-5米,即向西走了5米.

请同学们把(1)、(2)画出图来

由(1),(2)得出:一个数同0相加,仍得这个数.

总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种情况.

有理数加法运算的三种情况:

特例:两个互为相反数相加;

(3)一个数和零相加.

每种运算的法则强调:(1)确定和的符号;(2)确定和的绝对值的方法.

(四)例题分析

例1 计算(-3)+(-9).

分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).

解:(-3)+(-9)=-12.

例2

分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值..(强调“两个较大”“一个较小”)

解:

解题时,先确定和的符号,后计算和的绝对值.

(五)巩固练习

1.计算(口答)

(1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);

(5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;

2.计算

(1)5+(-22); (2)(-1.3)+(-8)

(3)(-0.9)+1.5; (4)2.7+(-3.5)

探究活动

题目 (1)在1,2,3,4四个数的前面添加正号或负号,使它们的和为0;

(2)在1,2,3,…,11,12十二个数的前面添加正号或负号,使它们的和为零;

(3)在1,2,3,4,…,99,100一百个数的前面添加正号或负号,使它们的和为0;

(4) 在解决这个问题的过程中,你能总结出一些什么数学规律?

参考答案 我们不妨不妨以第二问为例探讨,比如,在12,11,10,5这四个数的前面添加负号,则这12个数的和是:-12-11-10+9+8+7+6-5+4+3+2+1=2.

现在我们将各数的符号加以调整,考虑到将一个正数变号,其和就要减少这个正数的两倍,因此可得到两个(明显的)解答:

(1)得+1变为-1,有-12-11-10+9+8+7+6-5+4+3+2-1=0; ①

(2)将(+6-5)变为-(6-5),有-12-11-10+9+8+7-6+5+4+3+2+1=0.②

又如,在11,10,8,7,5这五个数的前面添加负号,得

12-11-10-9-8-7+6-5+4+3+2+1=-4,

我们就有多种调整的方法,如将-8与+6变号,有

12-11-10+9+8-7-6-5+4+3+2+1=0. ③

经过几次试验,我们发现了规律:欲使十二个数的和为零,其中正数的和的绝对值与负数的和的绝对值必须相等.但

1+2+3+4+5+6+7+8+9+10+11+12=78

因此我们应该使各正数的和的绝对值与各负数的和的绝对值均为

为了简便起见,我们把①式所表示的一个解答记为(12,11,10,5,1),那么②,③两式所表示的解答就分别记为(12,11,10,6)与(11,10,7,6,5).

同时我们还发现:如果(12,11,10,5,1)是一个解答,那么(9,8,7,6,4,3,2)也必定是一个解答.同样,对应于②,③两式,还分别有另两个解答:(9,8,7,5,4,3,2,1)与(12,9,8,4,3,2,1).这个规律我们不妨叫做对偶律.

此外我们还可发现,由于的三个数12,11,10其和33<39,因此必须再增加一个数6,才有解答(12,11,10,6),也就是说:添加负号的数至少要有四个;反过来,根据对偶律得:添加负号的数最多不超过八个.

掌握了上述几条规律,我们就能够在很短的时间内得到许多解答.最后让我们告诉你,第(2)问的解答个数并非无数多,其总数是124个.

七年级数学教案人教版2021例文2

教学目标:

1.知识与技能

结合具体实例,进一步认识三角形的概念,掌握三角形三条边的关系.

2.过程与方法

通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理地表达能力.

3.情感、态度与价值观

联系学生的生活环境、创设情景,帮助学生树立几何知识源于实际、用于实际的观念,激发学生的学习兴趣.

教学重点难点:

1.重点

让学生掌握三角形的概念及三角形的三边关系,并能运用三边关系解决生活中的实际问题.

2.难点

探究三角形的三边关系应用三边关系解决生活中的实际问题.

教学设计:

本节课件设计了以下几个环节:回顾与思考、情境引入、三角形的概念、探索三角形三边关系、练习应用、课堂小结、探究拓展思考、布置作业.

第一环节 回顾与思考

1、如何表示线段、射线和直线?

2、如何表示一个角?

第二环节 情境引入

活动内容:让学生收集生活中有关三角形的图片,课上让学生举例,并观察图片.

活动目的:让学生能从生活中抽象出几何图形,感受到我们生活在几何图形的世界之中.培养学生善于观察生活、乐于探索研究的学习品质,从而更大地激发学生学习数学的兴趣

第三环节 三角形概念的讲解

(1)你能从中找出四个不同的三角形吗?

(2)与你的同伴交流各自找到的三角形.

(3)这些三角形有什么共同的特点?

通过上题的分析引出三角形的概念、三角形的表示方法及三角形的边角的表示方法.并出两道习题加以练习,从练习中归纳出三角形的三要素和注意事项.

第四环节 探索三角形三边关系

七年级数学教案人教版2021例文3

教学目的:

理解一元一次方程解简单应用题的方法和步骤;并会列一元一次方程解简单应用题。

重点、难点

1、重点:弄清应用题题意列出方程。

2、难点:弄清应用题题意列出方程。

教学过程

一、复习

1、什么叫一元一次方程?

2、解一元一次方程的理论根据是什么?

二、新授。

例1、如图(课本第10页)天平的两个盘内分别盛有51克,45克食盐,问应该从盘A内拿出多少盐放到月盘内,才能两盘所盛的盐的质量相等?

分析:等量关系;A盘现有盐=B盘现有盐

检验所求出的解是否合理。 培养学生自觉反思求解过程和自觉检验方程的解是否正确的良好习惯。

例2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了1400块,问初一同学有多少人参加了搬砖?

1.题目中有哪些已知量?

(1)参加搬砖的初一同学和其他年级同学共65名。

(2)初一同学每人搬6块,其他年级同学每人搬8块。

(3)初一和其他年级同学一共搬了1400块。

2.求什么?

初一同学有多少人参加搬砖?

3.等量关系是什么?

初一同学搬砖的块数十其他年级同学的搬砖数=1400

三、巩固练习

教科书第12页练习1、2、3

四、小结

列方程解应用题的关键在于抓住能表示问题含意的一个主要等量关系,对于这个等量关系中涉及的量,哪些是已知的,哪些是未知的,用字母表示适当的未知数(设元),再将其余未知量用这个字母的代数式表示,最后根据等量关系,得到方程,解这个方程求得未知数的值,并检验是否合理。最后写出答案。

五、作业

七年级数学教案人教版2021例文4

教学目的

使学生灵活应用解方程的一般步骤,提高综合解题能力。

重点、难点

1、重点:灵活应用解题步骤。

2、难点:在“灵活”二字上下功夫。

教学过程 :

一、 一、 复习

1、一元一次方程的解题步骤。

2、分数的基本性质。

二、新授

例1.解方程(见课本)

分析:此方程的分母是小数,如果能把各分母化为整数,那么就可以用前面学过的方法求解了。那么怎样化简呢?引导学生分析,并求出方程的解。交流体会。

例2.解方程(见课本)

例3:已知公式V=中,V=120、D=100、∏=3.14,求n的值。(保留整数)

分析:在公式中,V、D、∏都已知,只要把它们的值代入公式,就可以得到关于n的一元一次方程。

三、巩固练习。

根据公式V=V0+at,填写下列表中的空格。

V V0 a t

0 2 8

48 3 14

15 5 4

76 13 7

四、小结。

若方程的分母是小数,应先利用分数的性质,把分子、分母同时扩大若干倍,此时分子要作为一个整体,需要补上括号,注意不是去分母,不能把方程其余的项也扩大若干倍。

五、作业 。

教科书第13页第3题

七年级数学教案人教版2021例文5

教学目的

掌握去分母解方程的方法,体会到转化的思想。对于求解较复杂的方程,注意培养学生自觉反思求解的过程和自觉检验方程的解是否正确的良好习惯。

重点、难点

1、重点:掌握去分母解方程的方法。

2、难点:求各分母的最小公倍数,去分母时,有时要添括号。

教学过程

一、复习提问

1.去括号和添括号法则。

2.求几个数的最小公倍数的方法。

二、新授

例1:解方程(见课本)

解一元一次方程有哪些步骤?

一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。

补充例:解方程 (x+15)=- (x-7)

三、巩固练习

教科书第10页,练习1、2。

四、小结

1.解一元一次方程有哪些步骤?

2.掌握移项要变号,去分母时,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上。

五、作业

教科书第13页习题6.2,2第2题。


七年级数学教案人教版例文相关文章:

人教版七年级数学教案最新例文

最新数学七年级上册教案人教版例文

最新七年级下册数学教案人教版范文

最新人教版初一上册数学教案例文

初一数学教案大全2021优秀例文

人教版七年级数学下册全册教案最新例文

初中数学人教版教案范文五篇

人教版七年级上册数学第四章教案2021例文

最新初中七年级数学教案范文

2021最新人教版七年级数学上册教案文案

    164231