高中数学等差数列知识点

业鸿3932分享

高中数学数列知识点总结可以帮助大家更清楚地认识高中数列,数列的知识点也是很重要而且有些难学的知识点下面是小编为大家整理的关于高中数学等差数列知识点,希望对您有所帮助!

高中等差数列知识点

1.定义:如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。同样为数列的等比数列的性质与等差数列也有相通之处。

2.数列为等差数列的充要条件是:数列的前n项和S可以写成S=an^2+bn的形式(其中a、b为常数).等差数列练习题

3.性质1:公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.

4.性质2:公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.

5.性质3:当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.

高考数学等差数列知识点

等差数列公式an=a1+(n-1)d

a1为首项,an为第n项的通项公式,d为公差

前n项和公式为:Sn=na1+n(n-1)d/2

Sn=(a1+an)n/2

若m+n=p+q则:存在am+an=ap+aq

若m+n=2p则:am+an=2ap

以上n.m.p.q均为正整数

解析:第n项的值an=首项+(项数-1)×公差

前n项的和Sn=首项×n+项数(项数-1)公差/2

公差d=(an-a1)÷(n-1)

项数=(末项-首项)÷公差+1

数列为奇数项时,前n项的和=中间项×项数

数列为偶数项,求首尾项相加,用它的和除以2

等差中项公式2an+1=an+an+2其中{an}是等差数列

通项公式:公差×项数+首项-公差

等差数列求和公式

若一个等差数列的首项为a1,末项为an那么该等差数列和表达式为:

S=(a1+an)n÷2

即(首项+末项)×项数÷2

前n项和公式

注意:n是正整数(相当于n个等差中项之和)

等差数列前N项求和,实际就是梯形公式的妙用:

上底为:a1首项,下底为a1+(n-1)d,高为n。

即[a1+a1+(n-1)d]_ n/2={a1n+n(n-1)d}/2。

推理过程

设首项为 , 末项为 , 项数为 , 公差为 , 前 项和为 , 则有:

当d≠0时,Sn是n的二次函数,(n,Sn)是二次函数 的图象上一群孤立的点。利用其几何意义可求前n项和Sn的最值。

注意:公式一二三事实上是等价的,在公式一中不必要求公差等于一。

求和推导

证明:由题意得:

Sn=a1+a2+a3+。。。+an①

Sn=an+a(n-1)+a(n-2)+。。。+a1②

①+②得:

2Sn=[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an](当n为偶数时)

Sn={[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an]}/2

Sn=n(A1+An)/2 (a1,an,可以用a1+(n-1)d这种形式表示可以发现括号里面的数都是一个定值,即(A1+An)

基本公式

公式 Sn=(a1+an)n/2

等差数列知识点

1.等差数列通项公式

an=a1+(n-1)d

n=1时a1=S1

n≥2时an=Sn-Sn-1

an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b

2.等差中项

由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。

有关系:A=(a+b)÷2

3.前n项和

倒序相加法推导前n项和公式:

Sn=a1+a2+a3+·····+an

=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①

Sn=an+an-1+an-2+······+a1

=an+(an-d)+(an-2d)+······+[an-(n-1)d]②

由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an)

∴Sn=n(a1+an)÷2

等差数列的前n项和等于首末两项的和与项数乘积的一半:

Sn=n(a1+an)÷2=na1+n(n-1)d÷2

Sn=dn2÷2+n(a1-d÷2)

亦可得

a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n

an=2sn÷n-a1

有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1

4.等差数列性质

一、任意两项am,an的关系为:

an=am+(n-m)d

它可以看作等差数列广义的通项公式。

二、从等差数列的定义、通项公式,前n项和公式还可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N_

三、若m,n,p,q∈N_,且m+n=p+q,则有am+an=ap+aq

四、对任意的k∈N_,有

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差数列。


高中数学等差数列知识点相关文章:

高中数学必修五数列知识点必看

高中数学必修五知识点必备总结

高考数学必考知识点归纳总结整理2021

高考数学考点题型全归纳

高考数学基础知识点总结2021

高中高二基础数学知识点总结2021

江苏高考数学知识点整理

高中必修五数学知识点必备

高一到高三数学公式和知识点归纳

人教版高中数学知识点都有哪些2021

    200460