分式方程人教版数学八年级上册教案

嘉红0分享

分式是形如A / B的式子,其中A、B是整式,B中含有字母。分式是不同于整式的一类代数式,分式的值随分式中字母取值的变化而变化。以下是小编整理的分式方程人教版数学八年级上册教案,欢迎大家借鉴与参考!

15.3分式方程教案

【教学目标】

知识目标

1.理解分式方程的意义.

2.了解解分式方程的基本思路和解法.

3.理解解分式方程时可能无解的原因,并掌握分式方程的验根方法.

能力目标

经历“实际问题——分式方程——整式方程”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识.

情感目标

在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.

【教学重难点】

重点:解分式方程的基本思路和解法.

难点:理解解分式方程时可能无解的原因.

【教学过程】

一、创设情境,导入新课

问题:一艘轮船在静水中的最大航速为30 km/h,它以最大航速沿江顺流航行90 km所用时间,与以最大航速逆流航行60 km所用时间相等,江水的流速为多少?

分析:设江水的流速为v km/h,则轮船顺流航行的速度为(30+v) km/h,逆流航行的速度为(30-v) km/h,顺流航行90 km所用的时间为小时,逆流航行60 km所用的时间为小时.可列方程=.

这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要研究的分式方程.

二、探究新知

1.教师提出下列问题让学生探究:

(1)方程=与以前所学的整式方程有何不同?

(2)什么叫分式方程?

(3)如何解分式方程=呢?怎样检验所求未知数的值是原方程的解?

(4)你能结合上述探究活动归纳出解分式方程的基本思路和做法吗?

(学生思考、讨论后在全班交流)

2.根据学生探究结果进行归纳:

(1)分式方程的定义(板书):

分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程

练习:判断下列各式哪个是分式方程.

(1)x+y=5; (2)=;

(3); (4)=0

在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程.

(2)解分式方程=的基本思路是:将分式方程化为整式方程.具体做法是:“去分母”,即方程两边同乘最简公分母.这也是解分式方程的一般思路和做法.

3.仿照上面解分式方程的做法,尝试解分式方程=,并检验所得的解,你发现了什么?与你的同伴交流.

4.思考:上面两个分式方程中,为什么=①去分母后所得整式方程的解就是①的解,而=②去分母后所得整式方程的解却不是②的解呢?学生分组讨论产生上述结果的原因,并互相交流.

5.归纳:

(1)增根:将分式方程变为整式方程时,方程两边同乘以一个含有未知数的整式,并约去分母,有可能产生不适合原方程的解(或根),这种根通常称为增根.

(2)解分式方程必须进行检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.

三、巩固练习

1.在下列方程中:

①=8+; ②=x;

③=; ④x-=0.

是分式方程的有(  )

A.①和②    B.②和③

C.③和④ D.④和①

2.解分式方程:(1)=;(2)=.

四、课堂小结

1.通过本节课的学习,你有哪些收获?

2.在本节课的学习过程中,你有什么体会?与同伴交流.

引导学生总结得出:

解分式方程的一般步骤:

(1)在方程的两边都乘以最简公分母,约去分母,化为整式方程.

(2)解这个整式方程.

(3)把整式方程的根代入最简公分母,看结果是不是零;使最简公分母为零的根不是原方程的解时,必须舍去.

五、布置作业

课本152页练习.

第2课时

【教学目标】

知识目标

会分析题意找出相等关系,并能列出分式方程解决实际问题.

ok3w_ads("s002");

《分式及分式方程》同步练习

1.在某市举行的大型商业演出活动中,对团体购买门票思想优惠,决定在原定票价的基础上每张降价80 元,这样按原定票价需花 6000 元购买的门票张数,现在只花费了 4800 元,求每张门票的原定价格?

24.为丰富校园文化生活,某校举办了成语大赛.学校准备购买一批成语词典奖励获奖学生.购买时,商家给每本词典打了九折,用 2880 元钱购买的成语词典,打折后购买的数量比打折前多 10 本.求打折前每本笔记本的售 价是多少元?

2.“六•一”儿童节前,某玩具商店根据市场调查,用 2500 元购进一批儿童玩具,上市后很快脱销,接着又用4500 元购进第二批这种玩具,所购数量是第一批数量的 1.5 倍,但每套进价多了 10 元.

(1)求第一批玩具每套的进价是多少元?

(2)如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?

15.3分式方程的应用:精选练习

11.列方程或方程组解应用题:

据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.


分式方程人教版数学八年级上册教案相关文章:

2021人教版最新八年级上册数学教案

人教版八年级数学上册教学计划五篇

人教版数学的8年级上册教学计划五篇

数学八年级上册的系统教学计划五篇

最新初二数学试卷讲评课教案范文

2021初二数学下第一课教案范文

初中数学教学计划表2021

人教版数学七年级上册教学计划范文

人教版七年级数学的上册教学计划2021

人教版数学七年级上册高效工作计划五篇

    201626