数据的波动人教版数学八年级上册教案

嘉红0分享

数据波动,数据有一个虚拟的虚假的,当数据的布局较为稀疏,平均每方差的数据之间的差异和大方差在较大的时候,当在数据布局相对集中,与私人数据和较小的平均数据之间的差的平方。以下是小编整理的数据的波动人教版数学八年级上册教案,欢迎大家借鉴与参考!

数据的波动程度:导学案

学习目标:

1. 了解方差的定义和计算公式。

2. 理解方差概念的产生和形成的过程。

3. 会用方差计算公式来比较两组数据的波动大小。

重点、难点:

1. 重点:方差产生的必要性和应用方差公式解决实际问题。

2. 难点:理解方差公式

一.学前准备:

问题 农科院计划为某地选择合适的甜玉米种子.选择种子时,甜玉米的产量和产量的稳定性是农科院所关心的问题.为了解甲、乙两种甜玉米种子的相关情况,农科院各用10块自然条件相同的试验田进行试验,得到各试验田每公顷的产量(单位:t)如表所示.

甲 7.65 7.50 7.62 7.59 7.65 7.64 7.50 7.40 7.41 7.41

乙 7.55 7.56 7.53 7.44 7.49 7.52 7.58 7.46 7.53 7.49

根据这些数据估计,农科院应该选择哪种甜玉米种子呢?

来衡量这组数据的波动大小,并把它叫做这组数据的方差(variance),记作 .

意义:用来衡量一批数据的波动大小

在样本容量相同的情况下,方差越大,说明数据的波动越大, 越不稳定

归纳:(1)研究离散程度可用

(2)方差应用更广泛衡量一组数据的波动大小

(3)方差主要应用在平均数相等或接近时

(4)方差大波动大,方差小波动小,一般选波动小的

例题:在一次芭蕾舞比赛中,甲乙两个芭蕾舞团都表演了舞剧《天鹅湖》,参加表演的女演员的身高(单位:cm)分别是:

甲163 164 164 165 165 166 166 167

乙163 165 165 166 166 167 168 168

哪个芭蕾舞团的女演员的身高比较整齐?

三.自我检查:

1.已知一组数据为2、0、-1、3、-4,则这组数据的方差为 。

2.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:

甲:7、8、6、8、6、5、9、10、7、4

乙:9、5、7、8、7、6、8、6、7、7

经过计算,两人射击环数的平均数相同,但S S ,所以确定 去参加比赛。

3.甲、乙两台机床生产同种零件,10天出的次品分别是( )

甲:0、1、0、2、2、0、3、1、2、4

乙:2、3、1、2、0、2、1、1、2、1

分别计算出两个样本的平均数和方差,根据你的计算判断哪台机床的性能较好?

《数据的波动程度》设计教学

(二)内容解析

本节课是在学生学习了平均数、中位数、众数这类刻画数据集中趋势的量后,学习刻画数据波动(离散)程度的量,即方差.

当两组数据的平均数相等或相近时,为了更好的做出选择经常要去了解一组数据的波动程度,可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一个量来刻画,自然引入方差.方差是能够反映一组数据的波动大小的一个统计量,应用它能解决很多实际问题.

教科书根据农科院选择甜玉米种子的背景提出问题,从统计上看,这个问题是要计算两组数据的平均数和比较它们的波动情况.为了直观看出数据的波动情况,教科书画出了两个散点图,通过观察散点图,可以比较两组数据的波动情况.这两个散点图使学生对数据偏离平均数的情况有一个直观的认识.在此基础上,教科书引进了利用方差刻画数据离散程度的方法,介绍了方差的公式,并从方差公式的结构上分析了方差是如何刻画数据的波动的,既方差越大,数据的波动越大.

因此本节课的教学重点是:方差产生的必要性和应用方差公式解决实际问题.

二、目标和目标解析

(一)教学目标

1.理解方差概念的产生和形成的过程.

2.会用方差的计算公式来比较两组数据的波动大小.

(二)教学目标解析

1.学生能由实际问题中感知,当两组数据的“平均水平”相近时,而实际问题中的意义却不一样,需出现另一个量来刻画,分析数据的差异,即方差.

2.学生能根据已知条件计算方差,比较两组数据的波动大小.

三、教学问题诊断分析

由于这节课是方差的第一节课,用方差来刻画数据的离散程度,从方差公式的结构上分析了方差是如何刻画数据的波动的,这些学生理解起来有一定的难度,以致应用时常常出现计算的错误,教师要剖析公式中每一个元素的意义,以便学生理解和掌握.

本节课的教学难点为:理解方差的意义.

四、教学过程设计

(一)情景引入

问题1 教科书第124页根据这些数据估计,农科院应该选择哪种甜玉米种子呢?

师生活动:学生想到计算它们的平均数.教师把学生分成两组分别用计算器计算这两组数据的平均数.(请两名同学到黑板板书)

设计意图:让学生明确农科院应该选择哪种甜玉米种子?需关注平均产量.

追问:怎样估计这个地区这两种甜玉米的平均产量?这能说明甲、乙两种甜玉米一样好吗?

设计意图:让学生明确可以用样本平均数估计总体平均数,发现甲、乙两种甜玉米的平均产量相差不大,但需选择哪种甜玉米种子?仅仅知道平均数是不够的.

(二)探究新知

问题2 如何考察甜玉米产量的稳定性呢?请设计统计图直观地反映出甜玉米产量的分布情况.

师生活动:教师引导学生用折线图或散点图反映数据的分布情况,画出折线图或散点图后,小组讨论,得到甲种甜玉米的产量波动较大,乙种甜玉米的产量波动较小.

设计意图:让学生明白当两组数据的平均数相近时,为了更好的做出选择需要去了解数据的波动大小,画折线图或散点图是描述数据波动大小的一种方法,进而引出如何用数值表示一组数据的波动?

问题3 从图中看出的结果能否用一个量来刻画呢?

师生活动:教师直接给出方差公式,并作分析和解释,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小.教师说明,平方是为了在表示各数据与其平均数的偏离程度时,防止正偏差与负偏差的相互抵消.取各个数据与其平均数的差的绝对值也是一种衡量数据波动情况统计量,但方差应用更广泛.整体的波动大小可以通过对每个数据的波动大小求平均值得到.

设计意图:让学生明白方差是能够反映一组数据的波动大小的一个统计量,并从方差公式中得到方差越大,数据的波动越大;方差越小,数据的波动越小.

问题4 利用方差公式分析甲、乙两种甜玉米的波动程度.

师生活动:教师示范:

关注学生是否会代值到公式中,从结果中能否知道哪种玉米的波动较大.

设计意图:使学生深刻体会到数学来源于实践,又反过来作用于实践,不仅使学生对学习数学产生浓厚的兴趣,而且培养了学生应用数学的意识.

追问:农科院应该选择哪种甜玉米种子呢?

设计意图:让学生类比用样本的平均数估计总体的平均数一样,用样本的方差来估计总体的方差,但用样本的方差来估计总体的方差时,先要计算它们的平均数.

(三)运用新知

例1 在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团都表演了舞剧《天鹅湖》,参加表演的女演员的身高(单位:cm)分别是:

甲 163 164 164 165 165 166 166 167

乙 163 165 165 166 166 167 168 168

哪个芭蕾舞团女演员的身高更整齐?

师生活动:引导学生分析:(1)题目中“整齐”的含义是什么?学生通过思考可以回答出整齐即身高的波动小,所以要研究两组数据的波动大小,即求方差.

《数据的波动程度》课时练习含答案

一、选择题

1.一组数据-1.2.3.4的极差是(  )

A.5 B.4 C.3 D.2

答案:A

知识点:极差

解析:解答: 4-(-1)=5.

故选:A.

分析:极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.注意:①极差的单位与原数据单位一致.②如果数据的平均数、中位数、极差都完全相同,此时用极差来反映数据的离散程度就显得不准确.

2.若一组数据-1,0,2,4,x的极差为7,则x的值是(  )

A.-3 B.6 C.7 D.6或-3

答案:D

知识点:极差

解析:解答: ∵数据-1,0,2,4,x的极差为7,

∴当x是最大值时,x-(-1)=7,

解得x=6,

当x是最小值时,4-x=7,

解得x=-3,

故选:D.

分析: 根据极差的定义分两种情况进行讨论,当x是最大值时,x-(-1)=7,当x是最小值时,4-x=7,再进行计算即可.



数据的波动人教版数学八年级上册教案相关文章:

2021人教版八年级数学上册教案最新

最新初中八年级数学上册教案例文

2021人教版最新八年级上册数学教案

2021最新人教版八年级数学下册全套教案

2021最新人教版八年级数学下册教案

八年级数学教案

八年级上册数学教学计划五篇

数学八年级上册的系统教学计划五篇

八年级上册数学教学工作计划五篇

2021最新初中数学8年级上册教案

    201723