初中数学函数的解题技巧
推荐文章
函数无论是在初中阶段还是高中阶段,都既是重点又是难点.学生在学习函数部分的知识时,往往是上课的时候能听懂,但是自己做题正确率却很低。下面是小编为大家整理的关于初中数学函数的解题技巧,希望对您有所帮助!
初中函数解题技巧
1配方法
通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。
配方法用的最多的是配成完全平方式,它是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。
通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4判别式法与韦达定理
一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,
最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
6构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,
从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。
运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。
所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
8几何变换法
在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。
中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。
另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
几何变换包括:(1)平移;(2)旋转;(3)对称。
9反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。
反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。
初中函数题的解题技巧
如果从中考的角度看,初中函数部分可以说是为了函数而函数,只是先把函数的概念填进大脑再说。
三种主要函数的解析式的形式和求解方法,正比例和一次函数就当一种,二次函数解析式的三种形式,三种解析式的求解方法及各个常数的意义、对图像的影响。三种函数的图像,一次函数和二次函数,一次函数和反比例函数的结合。
直接求解析式,或者求出解析式再求上面的点坐标,是很常见的考题,这类题了解基本概念就行。利用二次函数求最值是一类应用。二次函数和方程的联系也是考点,需要对所学概念熟记于心、融会贯通,多练习,形成对数学的敏感性,做到看到什么类型,就想到脑中的哪个知识点和基本概念。
还有一种所谓大题,平面几何和函数综合题,别被唬住了,往往也包括了送分的球解析式小题,但其实更多的只是平面几何的问题,只是批了层函数的外衣,单纯来看,比一般的平面几何更简单,只是因为批了这么层外衣,就把人迷惑了。所以遇到这种题,首先别被它吓住了,只要基本概念清楚,剥掉函数的外衣,其实质就是平面几何。
应付中考,这就够了,虽然初中函数引入时,教材就几乎明示,函数作为一种工具,要把你带了研究变量数学的领域,让你更关注运动和联系。但于此相矛盾的是,在应试上,学函数还是为了函数本身,这或许是初中阶段对函数学习的教学要求所致――了解函数,但是这却造成了机械地学习函数,脱离函数本质。
静止地、孤立地学习函数,应付中考还真没问题,但任何事物是运动的,事物之间是普遍联系的,函数就是揭示运动规律和内在联系的一个数学工具。同样,人也是运动发展的,知识也是有连续性的。很多人在初中时可以用机械的方法把函数“学得很好”,一进高中,不到一个学期,集合、映射、函数,一下就晕了,以至到后面脱节越来越严重。
初中数学函数解题技巧分享
1、注重“类比”思想
不同的事物往往具有一些相同或相似的属性,人们正是利用相似事物具有的这种属性,通过对一事物的认识来认识与它相似的另一事物,这种认识事物的思维方法就是类比法。初中学习的正比例函数、一次函数、反比例函数、二次函数在概念的得来、图象性质的研究、及基本解题方法上都有着本质上的相似。因此老师指出,采用类比的方法不但省时、省力,还有助于学生的理解和应用。是一种既经济又实效的教学方法。
2、注重“数形结合”思想
数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。
函数的三种表示方法:解析法、列表法、图象法本身就体现着函数的“数形结合”。函数图象就是将变化抽象的函数“拍照”下来研究的有效工具,函数教学离不开函数图象的研究。
3、注重自变量的取值范围
自变量的取值范围,是解函数问题的难点和考点。正确求出自变量取值范围,正确理解问题,并化归为解不等式或不等式组。这需要学生掌握函数的思想,不等式的实际应用,全面考虑取值的实际意义。
4、注重实际应用问题
学习函数的主要目的之一就是在复杂的实际生活中建立有效的函数模型,利用函数的知识解决问题。这也是新课标所倡导的学习,因此新教材大力倡导函数与实际的应用。
初中掌握数学解题方法和技巧很重要,同学们要能够掌握函数的基本知识点,效地形成“类比”和“数形结合”等数学思想,从而形成自己的在数学函数方面的解题方法和技巧。