直线和圆的位置关系北师大版数学初三上册教案
直线与圆的位置关系还可以通过比较圆心到直线的距离d与圆半径r的大小来判别,其中,当 d=r 时,直线与圆相切。利用切线的定义。以下是小编整理的直线和圆的位置关系北师大版数学初三上册教案,欢迎大家借鉴与参考!
直线和圆的位置关系:教案
教学目标:
1)知识目标:
a、知道直线和圆相交、相切、相离的定义。
b、根据定义来判断直线和圆的位置关系,会根据直线和圆相切的定义画出已知圆的切线。
c、根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置。
2)能力目标:
让学生通过观察、看图、填表、分析、对比,能找出圆心到直线的距离和圆的半径之间的数量关系,揭示直线和圆的关系。此外,通过直线与圆的相对运动,培养学生运动变化的辨证唯物主义观点,通过对研究过程的反思,进一步强化对分类和归纳的思想的认识。
《直线和圆的位置关系》同步练习
1.如图24-2-20,有两条公路OM,ON相交成30°角,沿公路OM方向离O点80米处有一所学校A,当重型运输卡车P沿公路ON方向行驶时,在以点P为圆心,50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.已知重型运输卡车P沿公路ON方向行驶的速度为18千米/时.
(1)求对学校A的噪声影响最大时,卡车P与学校A的距离;
(2)求卡车P沿公路ON方向行驶一次给学校A带来噪声影响的时间.
直线和圆的位置关系:课后测试
1.P为⊙O外一点,PA,PB分别切⊙O于点A,B,∠APB=50°,点C为⊙O上一点(不与A,B重合),则∠ACB的度数为 65°或115° .
【解答】解:连接OA、OB.
∵PA,PB分别切⊙O于点A,B,
∴OA⊥PA,OB⊥PB;
∴∠PAO=∠PBO=90°;
又∵∠APB=50°,
∴在四边形AOBP中,∠AOB=360°﹣90°﹣90°﹣50°=130°,