初中七年级人教版数学知识点
在我们平凡的学生生涯里,很多人都经常追着老师们要知识点吧,知识点就是一些常考的内容,或者考试经常出题的地方。下面是小编为大家整理的关于初中七年级人教版数学知识点,希望对您有所帮助!
初一数学知识点
幂的乘方与积的乘方a)幂的乘方法则:mnnmaa)((m,n都是整数数)是幂的乘法法则为基础推导出来的,但两者不能混淆。b)),()()(都为整数nmaaamnmnnm。c)底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3).(),()(,为奇数时当为偶数时当一般地nanaannnd)底数有时形式不同,但可以化成相同。e)要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。f)积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即nnnbaab)((n为正整数)。g)幂的乘方与积乘方法则均可逆向运用。五、同底数幂的`除法a)同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即nmnmaaa0).b)在应用时需要注意以下几点:1)法则使用的前提条件是同底数幂相除而且0不能做除数,所以法则中a0。2)任何不等于0的数的0次幂等于1,即)0(10aa,如1100,(-2.50=1),则00无意义。c)任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即ppaa1(0,p是正整数),而0-1,0-3都是无意义的;当a0时,a-p的值一定是正的,当a0时,a-p的值可能是正也可能是负的,
如41(-2)2-,81)2(3d)运算要注意运算顺序。
初一人教版数学上册知识点
1、正方形的概念
有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质
(1)具有平行四边形、矩形、菱形的一切性质;
(2)正方形的四个角都是直角,四条边都相等;
(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;
(4)正方形是轴对称图形,有4条对称轴;
(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;
(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
3、正方形的判定
(1)判定一个四边形是正方形的主要依据是定义,途径有两种:
先证它是矩形,再证有一组邻边相等。
先证它是菱形,再证有一个角是直角。
(2)判定一个四边形为正方形的一般顺序如下:
先证明它是平行四边形;
再证明它是菱形(或矩形);
最后证明它是矩形(或菱形)。
七年级上册数学知识点
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。
2.系数:单项式中的数字因数叫做这个单项式的系数。所有字母的指数之和叫做这个单项式的次数。任何一个非零数的零次方等于1.
3.多项式:几个单项式的和叫多项式。
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的.项;多项式里,次数最高项的次数叫多项式的次数。
5.常数项:不含字母的项叫做常数项。
6.多项式的排列
(1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
(2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
7.多项式的排列时注意:
(1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
(2)有两个或两个以上字母的多项式,排列时,要注意:
a.先确认按照哪个字母的指数来排列。
b.确定按这个字母向里排列,还是向外排列。
(3)整式:
单项式和多项式统称为整式。
8. 多项式的加法:
多项式的加法,是指多项式的同类项的系数相加(即合并同类项)。
9.同类项:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。
10.合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。
11.掌握同类项的概念时注意:
(1)判断几个单项式或项,是否是同类项,就要掌握两个条件:
①所含字母相同。
②相同字母的次数也相同。
(2)同类项与系数无关,与字母排列的顺序也无关。
(3)所有常数项都是同类项。
12.合并同类项步骤:
(1)准确的找出同类项;
(2)逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变;
(3)写出合并后的结果。
13.在掌握合并同类项时注意:
(1)如果两个同类项的系数互为相反数,合并同类项后,结果为0;
(2)不要漏掉不能合并的项;
(3)只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。