2021年人教版数学一年级下册教案
2021最新年人教版数学一年级下册教案
要注意用学生易懂的语言对抽象的、枯燥的、难以理解的理论知识进行诠释。可采用讲授法、范例教学法、讨论归纳法等。今天小编在这里整理了一些2021年人教版数学一年级下册教案,我们一起来看看吧!
2021年人教版数学一年级下册教案1
教学内容:九年义务教育小学数学第十册《通分》
教学目的:通过比较异分母分子不同分数的大小,初步理解通分的意义,并在逐步探索通分的过程中,深刻体验主动发现问题、解决问题的成就感,选择适合自己操作的方法解决有关问题。
教学重点:主动探索掌握通分的方法。
教学过程
一、铺垫创境
1、求最小公倍数4和6 、8和9、 9和27
2、把下面的分数按分母相同或不同进行分类 。
3、化成分母是20而大小不变的分数。
4、比较下面各组数的大小 ○ 、 ○ 、 ○
二、探究学习
1、独立思考:你先自己动脑思考怎样解决这个问题?
2、小组交流:当你对问题有了初步设想时,可以与小组其他同学交流一下想法。
3、大组交流:哪一组来说说本组的想法?其他小组可以质疑、补充。
4、观察分析:第一类方法的几种情况共同经历了一个怎样的过程?
将异分母分数转化成与原来分数相等的同分母分数的过程。说说通分是一个怎样的过程?
5、上面两种通分方法,你更喜欢哪一种通分的方法?为什么?用两个分母的最小公倍数作公分母比较简便。
6、做一做:把下面两组分数通分 和
三、巩固深化
1、通分练习: 和 、 和 从这组练习中,你发现了什么?并根据学生的答题情况判断哪一组通分是对的?哪一组通分是不简便的?
2、比较大小: 9/10○11/12
3、发散训练: 1/15<( )<1/6
通 分
四、课堂小结:你有哪些收获?
转化
五、板书设计:
异分母分数
同分母分数 公分母
分数的基本性质
最小公倍数
公倍数
2021年人教版数学一年级下册教案2
教学内容:第43页例4,完成“试一试”“练一练”和练习十的1~4题。
教学目标:
1、使学生认识比例的“项”以及“内项”和“外项”。
2、理解并掌握比例的基本性质,会应用比例的基本性质正确判断两个比能否组成比例。
3、通过自主学习,让学生经历探究的过程,体验成功的快乐。
教学重、难点:理解并掌握比例的基本性质;引导观察,自主探究发现比例的基本性质。
教学过程:
一、创设情境,教学比例的基本知识。
1、复习:
师:什么叫比例?下面每组中的两个比能否组成比例?出示:
1/3∶1/4和12∶9 1∶5和0.8∶4 7∶4和5∶3 80∶2和200∶5
学生根据比例的意义进行判断,教师结合回答板书:
1/3∶1/4=12∶9 7∶4≠5∶3 1∶5=0.8∶4 80∶2=200∶5
2、认识比例各部分的名称
(1)介绍“项”:组成比例的四个数,叫做比例的项。
(2)3 :5 = 18 :30 学生尝试起名。
师介绍:比例的两项叫做比例的外项,中间的两项叫做比例的内项。
3 :5 = 18 :30
内项
外项
(3)如果把比例写成分数的形式,你还能指出它的内、外项吗?
出示:3/5=18/30
(4)已经知道了比例各部分名称,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?
师:刚才,你们是根据比例的意义先求出比值再作出判断的。老师不是这样想的,可很快就判断好了,想知道其中的秘密吗?告诉你们,老师是运用了比例的基本性质进行判断的。
二、教学例4
1、提问:你能根据图中的数据写出比例吗?
(1)引导学生写出尽可能多的比例。并逐一板书,同时说出它们的内项和外项。
(2)引导思考:仔细观察写出的这些比例式,你能否发现有没有什么相同的特点或规律呢?
2、学生先独立思考,再小组交流,探究规律。
(板书:两个外项的积等于两个内项的积。)
3、验证:是不是任意一个比例都有这样的规律?
⑴课件显示复习题(4组):
1/3∶1/4和12∶9; 1∶5和0.8∶4; 7∶4和5∶3; 80∶2和200∶5
学生验证。
⑵学生任意写一个比例并验证。
教师将学生所举比例故意写成分数形式,追问:哪两个是内项,哪两个是外项,让学生算出积并结合回答板书。通过交-连线使学生明确:在这样的比例中,比例的基本性质可以表达为:把等号两端的分子、分母交-相乘,结果相等。
师:老师也写了一个比例(板书:3∶2=5∶4),怎么两个外项的积不等于两个内项的积!你们发现的规律可能是有问题的。
引导学生得出:你举的例子从反面证明了我们发现的规律是正确的。因为3∶2和5∶4这两个比是不能组成比例的。只有在比例中,两个外项的积等于两个内项的积。
师:很有道理!同学们很会观察,很会猜想,很会验证,自己发现了比例的基本性质。
板书:在比例中,两个外项的积等于两个内项的积。这叫做比例的基本性质。
⑶如果用字母表示比例的四项,即a:b=c:d,那么这个规律可以表示成什么。
(4)完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。
读书P44页,勾画
5、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)
6、比例的基本性质的应用
(1)比例的基本性质有什么应用?
(2)做“试一试”:出示“3.6 :1.8和0.5 :0.25”。
A、先假设这两个比能组成比例
:让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。提问:3.6 :1.8和0.5 :0.25能组成比例吗? 根据比例的基本性质,能判断两个比能不能组成比例吗?
b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。
C、根据比例的基本性质判断组成的比例是否正确。
三、综合练习:
1、完成练一练
(1)学生尝试练习。
(2)交流讨论。使学生明确:可以把四个数写成两个比,根据比值是否相等作出判断。也可将四个数分成两组,根据每组中两个数的乘积是否相等作出判断,其中运用比例的基本性质进行判断比较简便。
2、在( )里填上合适的数。
1.5:3=( ):4
12:( )=( ):5
先让学生尝试填写,再交流明确思考方法。
3、补充一组灵活训练题:
A、如果让你根据“2×9=3×6”写出比例,你行吗?你能写出多少个呢?
B、你能用“3、4、5、8”这四个数组成比例吗?若能,请把组成的比例写出来。
C、你能从3、4、5、8中换掉一个数,使之能组成比例吗?
四、全课小结:
同学们真行!不仅探索发现了比例的基本性质,还能自觉地运用比例的基本性质,去判断两个比能否组成比例,去求比例中的未知项。
能告诉我比例的基本性质是什么吗?你觉得学了它有什么用处?
五、课堂作业。
1、做练习十第1、3题
2、独立完成2、4题
板书设计:
比例的基本性质
3 :5 = 18 :30
内项
外项
6:4=3:2 4:6=2:3 4:2=6:3 3:6=2:4
3×4=6×2
a:b=c:d ad=bc
在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。
2021年人教版数学一年级下册教案3
教学目标:
1、学生能在具体情境中自主解决乘加、乘减问题,建构乘加、乘减问题的模型,形成基本的解决问题的策略,掌握乘加、乘减的计算方法和算理,能正确地计算。
2、学生能初步了解同一问题可以有不同的解决方法,体验解决问题策略的多样性。
3、在感受、体验、探索的过程中,体会“乘加、乘减”这一问题模型与生活的密切联系,能联系生活经验解释连乘的模型,增强探索的意识,体验成功的快乐。
教学重点:
建立乘加、乘减的模型,掌握乘加、乘减问题的基本结构和数量关系。
教学难点:
乘加、乘减问题的建模过程及模型内化和解释。
教学过程:
一、创设情境,引入新课
1、复习:看图列乘法算式。
2、出示旋转木马图,提出问题:旋转木马上一共坐了多少人?
二、自主探究,建立模型
1、这个问题怎样解决呢?你们先自己动脑筋想一想,我们也可以借助学具摆一摆,再在小组里互相说说。(教师在黑板上摆上4排小棒,分别是3、3、3、2。学生进行小组讨论。)
(设计意图:小棒的出现使数学由具体人到符号化的一种过渡。)
2、小组交流解决过程。
说清楚
(1)你想出了几种方法?
(2)算式怎么列?
(3)先求什么?再求什么?
听仔细
(1)同学的方法和你的一样吗?
(2)怎么不一样?
(设计意图:自主关键,合作是内化,让学生在独立的基础上再进行小组交流,能进一步帮助学生们获得多种的解题策略。)
3、展示学生的解法,交流讨论。
(设计意图:在这个过程中,允许学生交流意见,以达全员参与的目的;提倡并鼓励算法多样化,;注意调动学生已有的学习经验和生活经验,采用独立尝试,让学生主动探索解决问题的方法,并在探索过程中锻炼提高能力;同时学会倾听,在同学的经验上想出新的方法。)
学生可能出现以下结果
①3+3+3+2=11 ②3x3+2=11 ③4x3-1=11等
(以上几种方法中,方法①是连加,学生在以前已经学过。方法②、③是本节课的重点。所以必须要引导学生得出这两种结论。对于其它的方法,教师应尊重学生的个性差异,学生能讲出算理的都要及于肯定。以培养学生的多角度思维。)
(1)师:看黑板上小朋友做的方法,你能看懂吗?有什么问题要考考这些小老师吗?
(2)生生、师生相互质疑。
4、结合小棒分析意义。
3×3+2就是求比3个3多2的数。
4×3-1就是求比4个3少1的数。
5、小结:选择自己喜欢的解法,对同桌说一说算理。
6、怎么计算,先算什么?再算什么?
7、观察比较。
(1)你喜欢哪个算式,为什么?(优化方法。)
(设计意图:在复习连加知识的基础上,引导学生主动发现3+3+3+2,还可以用乘加算式来表示3×3+2。乘加算式的发现源自于学生的心理需要——追求简单美,同时加深了对乘法意义的理解。)
(2)方法①我们已经知道了,它叫连加。方法②、③。你给它们取个名字,叫什么好?
(3)揭示课题:这就是我们今天所要学的内容。(板书:乘加,乘减)
(设计意图:观察比较是一种提升)
(设计意图:在上述活动中,学生不仅解决了问题,而且通过情境理解了乘加、乘减的意义,自然得出了计算的顺序,同时为今后两步计算应用题的学习建立了感性认识的基础。在教学活动中引导学生在操作体验和算法多样化之间建立有效的联系,要借助有效的“表象操作”促使学生从“实物”到“算式”的过渡。)
三、巩固运用,模型内化
1、P58 做一做1。
2、练习十二4。
3、练习十二5。
四、课堂总结
通过刚才的学习你有什么收获?还有什么问题吗?
(设计意图:设计有梯度的习题,层层递进。在层层递进的问题情境中思维不断提升,培养了思维的灵活性和深刻性。特别是在例题的教学中,让学生自由的说明方法,并展现算法的多样化,有效的发展了学生的思维。学生都是具有丰富潜力的个体。事实证明,正确把握学生的“最近发展区”,灵活驾御教材,新教材才能展示它深沉的魅力。)
板书设计:
乘加 乘减
一共坐了多少人?
3+3+3+2=11
3×3+2=11 4×3-1=11
9 12
2021年人教版数学一年级下册教案4
教学内容:
苏教版义务教育教科书《数学》六年级上册第44~46页例2、例3,,练一练,第47~48页练习七第5~8题。
教学目标:
1.使学生经历探索整数除以分数计算方法的过程,理解并掌握整数除以分数的计算方法,能正确计算整数除以分数
的试题。
2.使学生在探索整数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。
教学重点:
掌握整数除以分数的计算方法。
教学难点:
理解整数除以分数与相应乘法的相等关系。
教学准备:
多媒体课件
教学过程:
一、复习
1.口算:
2.揭题:整数除以分数。
二、教学例2
1.提问:幼儿园李老师把4个同样大小的橙子分给小朋友。
继续提问:如果每人吃1个,可以分给几个小朋友?
2.出示第(2)题,指名读题,口头列式。
问:解答这个问题,为什么也是用除法计算?
出示挂图,请根据图的意思想一想:可以怎样计算?
先让学生分组讨论,再组织全班交流:
把4个橙子每个分成一份,可分成几份?
板书:=4×2
看到这个等式,你能想到什么?
3.出示第(3)题。
(1)学生读题,列式。
(2)你能在图中分一分,再想出计算结果吗?让学生操作后明确:
(3)出示:
提问:从这两个式子中,你又想到了什么?
三、教学例3
1.出示题目,让学生读题列式。
2.请根据每米剪一段,在图上分一分,看看结果是多少。
3.想一想:可以怎么算,为什么?
板书:
4.归纳和总结:想一想,整数除以分数可以怎么算?
先在小组中说一说,再全班交流。
四、练习
1.做“练一连”第1题。
先让学生各自在书上独立填写,再指名交流。
提问:整数除以分数可以怎样计算?
2.做“练一连”第2题。
各自练习,并指名板演,练习后评议交流。
提醒学生:把分数除法转化成分数乘法后,能约分的可以先约分,再计算。
3.做练习七第5题。
先让学生看图想商是几,再计算。比较看图得出的结果与计算得出的结果是否一致。
4.做练习七第7题。
先计算,再比较:每组中上、下两题有什么联系?
五、作业:练习七第6题和第8题。
六、全课总结:这节课学习了什么?你有什么收获?
2021年人教版数学一年级下册教案5
教学内容:
7,6 加几
教学目标:
1、探究7、6加几的进位加法的计算方法,能正确进行计算。
2、能根据一幅图中两个已知数写出两道加法式子,初步理解这两个算式之间的联系。
3、能积极主动参与知识的探究过程,提高分析、解决简单数学问题的能力。
4、通过问题情景的创设,获得成功的体验,感受到生活中处处有数学,对学习数学产生兴趣。
教具准备:
教师准备课件。
预习学案:
9 + ( ) = 108 + ( ) = 107 + ( ) = 106 + ( ) = 105 + ( ) =104 + ( ) =108 + 18 + 28 + 35 + 58 + 58 + 68 + 87 + 8
教学过程:
一、创设情景
引入多媒体演示:通过信息图提出问题:
问题1:1号运动员一共投了多少个?
问题2:2好运动员一共投了多少个?
师:怎样解决这样的问题?
学生甲:……
学生乙:……
教师:小朋友采用不同的方法做出这道题,值得表扬。这节课我们来研究7,6加几。(板书课题:7,6加几)。
教学意图:通过复习9,8加几,帮助学生找准原有认知起点,便于学生有效地利用旧知识主动学习新知识。
二、探索新知
教学7加几的.进位加法。
(1)创设情景列算式。课件演示(小试身手)
(2)出示问题探究 6+5
6+5的演示图
①分组讨论交流。
②小组代表汇报各自的想法。
学生甲:我是这样想的,在6+5中,将5分成4和1,6和4加起来得10,10+1=11。
学生乙:6+5,将6分成1和5,5+5=10,10+1=11。
学生丙:6+5可以先数6个再数5个,合起来为11。
教师:同学们说的想的这些方法都不错,大家可以选自己喜欢的方法计算。
教师:请同学们运用自己喜欢的方法计算下面的算式题。
7+4=□ 7+7=□学生计算后抽几个学生说一说自己是怎样算的,集体订正。
教师:该怎样计算呢?请同桌进行讨论交流,谈谈各自的想法。学生同桌讨论交流后,派代表说自己的想法。
教师:请同学们想一想:6加几和刚才学习的7加几有相似的地方吗?哪些地方相似?
学生:7加几是把另一个数分成3和几,6加几是把另一个数分成4和几,都是把前面两个数加起来得10后,再加余下的数。
教师:同学们能从中发现规律,真不错。请同学们运用自己喜欢的方法计算下面的算式题。6+6= 6+8= 学生计算后抽几个学生说一说自己是怎么算的,集体订正。
教学意图:通过找6加几、7加几的计算规律,培养学生的类推能力,提高学生对进位加法计算方法的掌握水平。
三、检测案
教师:我们学习了7,6加几的进位加法,同学们能不能说出所有7,6加几的式子呢?学生先自己写算式,再把写好的算式在小组内交流。教师视频展示学生排列好的式子:
7加几的式子有:
7+07+17+27+37+47+57+67+77+87+9
6加几的式子有:
6+06+16+26+36+46+56+66+76+86+9
教师:为什么要这样排序呢?
学生:这样从0排到9,很好记。
教师:请同学计算出每道式子的得数。学生回答。(略)教师动态演示各式得数。
教师:请同学们自制7,6加几的口算卡片,并且有规律地排列起来。
教学意图:用学生自制口算卡片的方式,激发学生的学习兴趣,提高学生对算式的掌握水平。
四、课堂小结
这节课你学习了什么?