初中实用数学知识点讲解
数学,是研究数量、结构、变化、空间、信息等相关概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。下面是小编为大家整理的关于初中实用数学知识点讲解,希望对您有所帮助!
初中数学基础知识点
平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。
初中数学平行四边形的性质知识点
1.定义:两组对边分别平行的四边形叫平行四边形
2.平行四边形的性质
(1)平行四边形的对边平行且相等;
(2)平行四边形的邻角互补,对角相等;
(3)平行四边形的对角线互相平分;
3.平行四边形的判定
平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分:
第一类:与四边形的对边有关
(1)两组对边分别平行的四边形是平行四边形;
(2)两组对边分别相等的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
第二类:与四边形的对角有关
(4)两组对角分别相等的四边形是平行四边形;
第三类:与四边形的对角线有关
(5)对角线互相平分的四边形是平行四边形
初中数学函数知识点总结
1.一次函数
(1)定义:形如y=kx+b(k、b是常数,且k≠0)的函数,叫做一次函数。特别地,当b=0时,y是x的正比例函数。即:y=kx(k为常数,k≠0)
所以,正比例函数是特殊的一次函数。
(2)一次函数的图像及性质:
1在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
2一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)。
3正比例函数的图像总是过原点。
4k,b与函数图像所在象限的关系:
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
当k>0,b>0时,直线通过一、二、三象限;
当k>0,b<0时,直线通过一、三、四象限;
当k<0,b>0时,直线通过一、二、四象限;
当k<0,b<0时,直线通过二、三、四象限;
当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
2.二次函数
(1)定义:一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,),称y为x的二次函数。
(2)二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0);
顶点式:y=a(x-h)^2+k(抛物线的顶点P(h,k));
交点式:
(3)二次函数的图像与性质
1二次函数的图像是一条抛物线。
2抛物线是轴对称图形。对称轴为直线x=-b/2a。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)。
3二次项系数a决定抛物线的开口方向。
当a>0时,抛物线向上开口;
当a<0时,抛物线向下开口。
4一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5抛物线与x轴交点个数
Δ=b^2-4ac>0时,抛物线与x轴有2个交点;
Δ=b^2-4ac=0时,抛物线与x轴有1个交点;
Δ=b^2-4ac<0时,抛物线与x轴没有交点。
3.反比例函数
(1)定义:形如y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。
(2)反比例函数图像性质:
1反比例函数的图像为双曲线;
当K>0时,反比例函数图像经过一,三象限,是减函数;
当K<0时,反比例函数图像经过二,四象限,是增函数;
反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
2由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。