七年级上学期数学重要知识点

业鸿3932分享

数学在人类历史发展和社会生活中发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。下面是小编为大家整理的关于七年级上学期数学重要知识点,希望对您有所帮助!

七年级上学期数学重要知识点

单项式与多项式知识

1、没有加减运算的整式叫做单项式。(数字与字母的积---包括单独的一个数或字母)

2、几个单项式的和,叫做多项式。其中每个单项式叫做多项式的项,不含字母的项叫做常数项。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。

单项式

1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

多项式

1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数的项的次数,叫做这个多项式的次数。

整式

1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

图形的初步认识知识点

一、立体图形与平面图形

1、长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。

2、长方形、正方形、三角形、圆等都是平面图形。

3、许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。

二、点和线

1、经过两点有一条直线,并且只有一条直线。

2、两点之间线段最短。

3、点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。

4、把线段向一方无限延伸所形成的图形叫做射线。

三、角

1、角是由两条有公共端点的射线组成的图形。

2、绕着端点旋转到角的终边和始边成一条直线,所成的角叫做平角。

3、绕着端点旋转到终边和始边再次重合,所成的角叫做周角。

4、度、分、秒是常用的角的度量单位。

把一个周角360等分,每一份就是一度的角,记作1°;把1度的角60等分,每份叫做1分的角,记作1′;把1分的角60等分,每份叫做1秒的角,记作1″。

四、角的比较

从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。

五、余角和补角

1、如果两个角的和等于90(直角),就说这两个角互为余角。

2、如果两个角的和等于180(平角),就说这两个角互为补角。

3、等角的补角相等。

4、等角的余角相等。

六、相交线

1、定义:两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

2、注意:

⑴垂线是一条直线。

⑵具有垂直关系的两条直线所成的4个角都是90。

⑶垂直是相交的特殊情况。

⑷垂直的记法:a⊥b,AB⊥CD。

3、画已知直线的垂线有无数条。

4、过一点有且只有一条直线与已知直线垂直。

5、连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。

6、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

7、有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。

两条直线相交有4对邻补角。

8、有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。两条直线相交,有2对对顶角。对顶角相等。

七、平行线

1、在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。

2、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

3、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

4、判定两条直线平行的方法:

(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。

(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。

(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。

5、平行线的性质

(1)两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。

(2)两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。

(3)两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。

正数和负数知识点

1、正数:像小学学过的大于0的数叫做正数。

2、负数:在正数前面加上负号“-”的数叫做负数。

3、正数负数的判断方法:

⑴具体的数:看是否有负号“-”,如果有“-”就是负数,否则是正数。

⑵含字母的数:如-a要看a本身的符号,如a是负的,则-a是正数,如a是正的则-a是负数,如a是0则-a是0。

4、0的含义:①0表示起点。②0表示没有。③0表示一种温度。④0表示编号的位数。⑤0表示精确度。⑥0表示正负数的分界。⑦0表示海拔平均高度。

5、具有相反意义的量;

6、正负数的作用:在同一问题中,用正负数表示的量具有相反的意义。

有理数

1、正数和负数的有关概念

(1)正数:比0大的数叫做正数;

负数:比0小的数叫做负数;

0既不是正数,也不是负数。

(2)正数和负数表示相反意义的量。

2、有理数的概念及分类

3、有关数轴

(1)数轴的三要素:原点、正方向、单位长度。数轴是一条直线。

(2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

(3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧

4、绝对值与相反数

(1)绝对值:在数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:

一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.即

(2)相反数:符号不同、绝对值相等的两个数互为相反数。

若a、b互为相反数,则a+b=0;

相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。

(3)绝对值最小的数是0;绝对值是本身的数是非负数。

任何数的绝对值是非负数。

最小的正整数是1,的负整数是-1。

5、利用绝对值比较大小

两个正数比较:绝对值大的那个数大;

两个负数比较:先算出它们的绝对值,绝对值大的反而小。

6、有理数加法

(1)符号相同的两数相加:和的符号与两个加数的符号一致,和的绝对值等于两个加数绝对值之和.

(2)符号相反的两数相加:当两个加数绝对值不等时,和的符号与绝对值较大的加数的符号相同,和的绝对值等于加数中较大的绝对值减去较小的绝对值;当两个加数绝对值相等时,两个加数互为相反数,和为零.

(3)一个数同零相加,仍得这个数.

加法的交换律:a+b=b+a

加法的结合律:(a+b)+c=a+(b+c)

7、有理数减法:减去一个数,等于加上这个数的相反数

8、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.

例如:14+12+(-25)+(-17)可以写成省略括号的形式:14+12-25-17,可以读作“正14加12减25减17”,也可以读作“正14、正12、负25、负17的和.”

9、有理数的乘法

两个数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘都得0。

第一步:确定积的符号第二步:绝对值相乘

10、乘积的符号的确定

几个有理数相乘,因数都不为0时,积的符号由负因数的个数确定:当负因数有奇数个时,积为负;

当负因数有偶数个时,积为正。几个有理数相乘,有一个因数为零,积就为零。

11、倒数:乘积为1的两个数互为倒数,0没有倒数。

正数的倒数是正数,负数的倒数是负数。(互为倒数的两个数符号一定相同)

倒数是本身的只有1和-1。


七年级上学期数学重要知识点相关文章:

初一数学上册重点知识整理 七年级数学上册重点汇总

七年级上册数学知识点总结人教版必看

初中七年级上册数学重要知识点总结

七年级上册数学知识点总结归纳必备

七年级数学上册知识点总结整理

数学七年级上册必备知识点

初一数学重要知识点归纳

七年级上册数学知识点归纳2021

七年级数学知识点归纳总结必看

    288587