八年级数学教师教学反思5篇
身为一名刚到岗的人民教师,我们的工作之一就是课堂教学,对教学中的新发现可以写在教学反思中,接下来给大家带来八年级数学教师教学反思,希望能给您大家带来帮助。
八年级数学教师教学反思1
我们常有这样的困惑:不仅是讲了,而且是讲了多遍,可是学生的解题能力就是得不到提高!也常听见学生这样的埋怨:巩固题做了千万遍,数学成绩却迟迟得不到提高!这应该引起我们的反思了。诚然,出现上述情况涉及方方面面,但其中的例题教学值得反思,数学的例题是知识由产生到应用的关键一步,即所谓“抛砖引玉”,然而很多时候只是例题继例题,解后并没有引导学生进行反思,因而学生的学习也就停留在例题表层,出现上述情况也就不奇怪了。
孔子云:学而不思则罔。“罔”即迷惑而没有所得,把其意思引申一下,我们也就不难理解例题教学为什么要进行解后反思了。事实上,解后反思是一个知识小结、方法提炼的过程;是一个吸取教训、逐步提高的过程;是一个收获希望的过程。从这个角度上讲,例题教学的解后反思应该成为例题教学的一个重要内容。本文拟从以下三个方面作些探究。
一、在解题的方法规律处反思
“例题千万道,解后抛九霄”难以达到提高解题能力、发展思维的目的。善于作解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步作一题多变,一题多问,一题多解,挖掘例题的深度和广度,扩大例题的辐射面,无疑对能力的提高和思维的发展是大有裨益的。
例如:(原例题)已知等腰三角形的腰长是4,底长为6;求周长。我们可以将此例题进行一题多变。
变式1 已知等腰三角形一腰长为4,周长为14,求底边长。(这是考查逆向思维能力)
变式2 已等腰三角形一边长为4;另一边长为6,求周长。(前两题相比,需要改变思维策略,进行分类讨论)
变式3已知等腰三角形的一边长为3,另一边长为6,求周长。(显然“3只能为底”否则与三角形两边之和大于第三边相矛盾,这有利于培养学生思维严密性)
变式4 已知等腰三角形的腰长为x,求底边长y的取值范围。
变式5 已知等腰三角形的腰长为X,底边长为y,周长是14。请先写出二者的函数关系式,再在平面直角坐标内画出二者的图象。(与前面相比,要求又提高了,特别是对条件0
再比如:人教版初三几何中第93页例2和第107页例1分别用不同的方法解答,这是一题多解不可多得的素材(AB为⊙O的直径,C为⊙O上的一点,AD和过C点的切线互相垂直,垂足为D。求证:AC平分∠DAB)
通过例题的层层变式,学生对三边关系定理的认识又深了一步,有利于培养学生从特殊到一般,从具体到抽象地分析问题、解决问题;通过例题解法多变的教学则有利于帮助学生形成思维定势,而又打破思维定势;有利于培养思维的变通性和灵活性。
二,在学生易错处反思
学生的知识背景、思维方式、情感体验往往和成人不同,而其表达方式可能又不准确,这就难免有“错”。例题教学若能从此切入,进行解后反思,则往往能找到“病根”,进而对症下药,常能收到事半功倍的效果!
有这样一个曾刊载于《中小学数学》初中(教师)版20_年第5期的案例:一位初一的老师在讲完负负得正的规则后,出了这样一道题:—3×(—4)= ?, A学生的答案是“9”,老师一看:错了!于是马上请B同学回答,这位同学的答案是“12”,老师便请他讲一讲算法:……,下课后听课的老师对给出错误的答案的学生进行访谈,那位学生说:站在—3这个点上,因为乘以—4,所以要沿着数轴向相反方向移动四次,每次移三格,故答案为9。他的答案的确错了,怎么错的?为什么会有这样的想法?又怎样纠正呢?如果我们的例题教学能抓住这一契机,并就此展开讨论、反思,无疑比讲十道、百道乃至更多的例题来巩固法则要好得多,而这一点恰恰容易被我们所忽视。
计算是初一代数的教学重点也是难点,如何把握这一重点,突破这一难点?各老师在例题教学方面可谓“千方百计”。例如在上完有关幂的性质,而进入下一阶段——单项式、多项式的乘除法时,笔者就设计了如下的两个例题:
(1)请分别指出(—2)2,—22,—2—2,2—2的意义;
(2)请辨析下列各式:
① a2+a2=a4
②a4÷a2=a4÷2=a2
③—a3 ·(—a)2 =(—a)3+2 =—a5
④(—a)0 ÷a3=0
⑤(a—2)3·a=a—2+3+1=a2
解后笔者便引导学生进行反思小结。
(1)计算常出现哪些方面的错误? (2)出现这些错误的原因有哪些? (3)怎样克服这些错误呢? 同学们各抒己见,针对各种“病因”开出了有效的“方子”。实践证明,这样的例题教学是成功的,学生在计算的准确率、计算的速度两个方面都有极大的提高。
三、在情感体验处反思
因为整个的解题过程并非仅仅只是一个知识运用、技能训练的过程,而是一个伴随着交往、创造、追求和喜、怒、哀、乐的综合过程,是学生整个内心世界的参与。其间他既品尝了失败的苦涩,又收获了“山重水复疑无路,柳暗花明又一村”的喜悦,他可能是独立思考所得,也有可能是通过合作协同解决,既体现了个人努力的价值,又无不折射出集体智慧的光芒。在此处引导学生进行解后反思,有利于培养学生积极的情感体验和学习动机;有利于激励学生的学习兴趣,点燃学习的热情,变被动学习为自主探究学习;还有利于锻炼学生的学习毅力和意志品格。同时,在此过程中,学生独立思考的学习习惯、合作意识和团队精神均能得到很好的培养。
数学教育家弗赖登塔尔就指出:反思是数学活动的核心和动力。总之,解后的反思方法、规律得到了及时的小结归纳;解后的反思使我们拨开迷蒙,看清“庐山真面目”而逐渐成熟起来;在反思中学会了独立思考,在反思中学会了倾听,学会了交流、合作,学会了分享,体验了学习的乐趣。
八年级数学教师教学反思2
引导学生预习,细心读教材培养学生的自学能力
学生往往不善于预习,也不知道预习起什么作用,预习仅是流于形式,草草看一遍,看不出问题和疑点。在指导学生预习时应要求学生做到:新知识的接受,数学能力的培养主要在课堂上进行,所以要特别重视课堂的学习效率,寻求正确的学习方法。预习前教师先布置预习提纲,使学生有的放矢。实践证明,养成良好的预习习惯,能使学生变被动学习为主动学习,同时能逐渐培养学生的自学能力。
加强互助学习,共同提高
教师在教学中要注意培养差生的自信心外,更应该充分利用优等生这个教育资源,进行好生差生配对,这也是合作学习的一种方式,它从以人为本的理念出发,关注了差生的发展,构建了团结,合作共同发展的良好的,和谐的学习环境。同时它也弥补了教师课后辅导时间不足的缺陷。
八年级数学教师教学反思3
一学期的工作转眼就结束了,面对新课程改革这股洪流。新教材变化很大:全书以问题为中心,内容灵活多样,具有很大的开放性。新的数学课程把我们领进了一片广阔天地,如何尽快地转变教育观念,适应崭新的教学内容,改变传统的教学方式成了我们工作的重点。下面具体谈谈我的一些工作方法以及我的困惑。
提高备课水平是保证课堂教学质量的重要措施,又是提高教师素质的重要途径。教师不能只把教案写得详细周全,满足于“今天我上完课了,改完作业了,完成教学任务了。”而应该常常反思自己的教育教学行为,记录教育教学过程中的所得、所失、所感,为不断创新,不断地完善自己,为不断提高教育教学水平。教师要反思的内容很多,但以下几个方面经常反思是非常重要的。一堂成功的数学课,往往给人以自然,和谐,舒服的享受。每一位教师在教材处理,教学方法,学法指导等诸方面都有自己的独特设计,在教学过程会出现闪光点。能激发学生学习兴趣的精彩导课语,在教学过程中对知识的重难点创新的突破点,激发学生参与学习过渡语,对学生做出的合理赞赏的评价语等诸方面都应该进行详细记录,供日后参考。在教学过程中,每节课总会有这有那的一些不尽人意的地方,有时候是语言说话不当,有时候是教学内容处理不妥,有时候是教学方法处理不当,有时候练习习题层次不够,难易不当。等等对于这些情况,教师课后要冷静思考,仔细分析学生冷场、不能很好掌握知识这方面的原因。对情况分析之后,要做出日后的改进措施,以利于在日后的教学中不断提高,不断完善。应该怎样对学生进行教学,教师会说要因材施教。可实际教学中,又用一样的标准去衡量每一位学生,要求每一位学生都应该掌握哪些知识,要求每一位学生完成同样难度的作业等等,每一位学生固有的素质,学习态度,学习能力都不一样,对学习有余力的学生要帮助他们向更高层次前进。平时布置作业时,让优生做完书上的习题后,再加上两三道有难度的题目,让学生多多思考。对于学习有困难的学生,则要降低学习要求,努力达到基本要求。布置作业时,让学困生,尽量完成书上的习题,课后习题不在加做,对于书上别特难的题目可以不做练习。《数学课程标准》明确了义务教育阶段数学课程的总目标,提出从知识与技能,数学思考,解决问题,情感与态度等四个方面来进一步阐述。
第一种教法是教师教知识,学生记知识,是一种填鸭式的教学。
第二种教法,教师试图帮助学生理解所学的知识,但是忽略了学习的主体是学生,教师替代了学生的学习,无法使每个学生学习有意义,有兴趣,使学生全心的投入到学习活动。
第三种教法,学生通过自己操作,自己学习,来理解和掌握知识。在完成知识与技能,数学思考,方面有较好的作用。但对于后面两个目标有所欠缺。学生的情感,兴趣没有尽情发展。
第四种教法,通过学生的联想,激发学生学习数学的兴趣,通过验证联想,使学生全身心的投入到学习活动中,教师给了足够的思考空间,通过验证进而概括,使学生体验到成功的喜悦。从而积极愉快的进入到运用。帮助学生理解和掌握了知识,同时又培养了学生学习数学的兴趣,也帮助学生在乘法与加法进行建构,使学生获得了真正的发展。人无完人,我们只有在教学工作中,多多反思,改正教学中的缺点与不足,不断进步,不断完善,才能使自己成为一名优秀的人民教师。
记得在一本书上看到,老师分四种类型:智慧爱心型,爱心操劳型,操劳良心型,良心应付型。多年以来,我一直积极思考如何做好本职工作,希望自己成为一名智慧爱心型的优秀教师。我认为,成人比成材更重要,要培养对社会有用的人,必须要有强烈的社会责任感,积极向上的团队合作精神,丰富的文化科学知识以及健康的身体和心理。
数学课程标准明确指出“有效的数学学习活动,不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”因此,探索适应新课程要求的教学方式,使学生的学习方式更加多样化,促进学生主动全面的发展,就成为教研活动的总目标。在教学中,怎样处理好自主探索与合作交流的关系,好方法大家资源共享,难题困难大家一起解决。碰到特别难以把握的问题,我会向其他有经验的老师们请教。
现代教师所面临的挑战,不但具有高度的不可预测性与复杂性,而且越来越找不到一套放之四海而皆准的应变办法。因此,教师只有随时对自己的工作及专业能力的发展进行评估,树立终身学习的意识,保持开放的心态,把学校视为自己学习的场所,在实践中学习,不断对自己的教育教学进行研究、反思,对自己的知识与经验进行重组,才能不断适应新的变革。只有形成自我发展、自我提升、自我创新的内在机制,自己在教学上才会有所提高。
八年级数学教师教学反思4
一、分析教材:
平均数、中位数和众数是三种反映一组数据集中趋势的统计量。当一组数据中出现一些极端数据时(个别数据偏大或偏小),平均数会受其影响,不能很好地代表这组数据的集中趋势。中位数或众数虽然不受极端数据的影响,但它们不能利用所有的数据信息,有时也不能完全反映出一组数据的集中趋势。
二、教学目标:
让学生通过对数据的分析,会求中位数与众数,并能根据具体问题解释其实际意义。培养学生发现问题、分析问题、解决问题的能力,并在具体活动中培养学生的探究意识与合作能力。让学生感受统计在生活中的应用,增强统计意识,培养统计能力。
三、教学重难点:
让学生会求中位数和众数,能结合情景理解其实际意义。教学难点是能根据具体问题情境选择适当的统计量表示数据的不同特征。
四、教学步骤:
上课前,我先让同学们玩“猜年龄”的游戏,让学生们初步感知平均数受到极端数据的影响,而不能反映出数据的一般水平。接着呈现一个超市工作人员工资的表格,引导学生讨论“怎样表示这个超市工作人员的月工资水平”在讨论中学生体会到平均数受极端数据的影响,不能很好地代表这组数据,需要新的统计量。从而引入新的统计量——中位数和众数。最后继续创设情景,让学生明白当数据个数奇、偶不同时,求中位数的方法也不同。
反思
1、数学活动的主人是学生,教师是组织者、合作者、指导者,在教学本课时,我以“小陶找工作”这一线索,组织学生思考、讨论“用月平均工资1000元来描述员工的月工资水平合适吗”,让学生自我探索,解决问题。
2、数学学习要联系学生已有的生活经验,让学生感受到数学源于生活,并且通过学习,可以把数学知识运用到生活中去,解决生活中的问题,让学生体会到数学的价值,提高学习数学的兴趣。
3、当学生的回答偏离正题时,教师要及时地引导,帮助其认识问题的本质是什么,充分教师引导。
八年级数学教师教学反思5
在沈阳抚顺的研讨会上,本人承担了《变量与函数》的教学任务。之前,我分别在本校与广州开发区中学分别上了一堂课。三节课,是一个实践、反思、改进、再实践的过程。经过课题组的点评与讨论,本人对概念课的教学设计与教学实践有了更深入的了解。
本设计呈现的课堂结构为:
(1)揭示学习目标;
(2)引入数学原型;
(3)抽象出数学现实,逐步达致数学形式化的概念;
(4)巩固概念练习(概念辨析);
(5)小结(质疑)。
1、如何揭示学习目标
概念课的引入要考虑学生关心的如下问题:这节课学什么概念?为什么要学这样的概念?
数学源于生活而高于生活,数学概念的引入可从生活的需要、数学的需要等方面引入。初中涉及的函数概念的核心是“量与量之间的特殊对应关系”。本课中,本人在导言中提出两个问题:“引例1,《名侦探柯南》中有这样一个情景:柯南根据案发现场的脚印,锁定疑犯的身高。你知道其中的道理吗?”、“引例2,我们班中同学A与职业相扑运动员,谁的饭量大?你能说明理由吗?”学生对上述问题既熟悉又感到意外。问题1涉及两个量的关系,脚印确定,对应的身高有多个取值;问题2涉及多个量的关系。上述问题,不仅仅是引起学生的注意,更重要的是让学生了解客观世界中量与量之间联系的多样性、复杂性,而函数研究的正是量与量之间的各种关系中的“特殊关系”。数学研究有时从最简单、特殊的情况入手,化繁为简。让学生明确,这一节课我们只研究两个量之间的特殊对应关系。“特殊在什么地方?”学生需带着这样的问题开始这一课的学习。
函数概念的引入应具有“整体观”,不仅要提供符合函数原型的单值对应的实例,还应提供其他的量与量之间关系的实例(如多个量的对应关系、两个量间的“一对多”关系等),使学生在更广泛的背景中经历筛选、提炼出新的数学知识的过程,逐步领悟“化繁为简”的数学研究方法。当然,这里的问题是作为研究“背景”呈现,教学时应作“虚化”处理,以突出主要内容。
2、如何选取合适的数学原型
从数学的“学术形态”看,数学原型所蕴藏的数学素材应与数学概念的内涵相一致;从数学的“教育形态”看,数学原型应真实、简洁、简单。真实指的是基于学生的生活现实、数学现实,它可以是生活中的实例,也可以是学生熟悉的动漫故事、童话故事等。简洁、简单指的是问题的表述应简洁,问题情境的设置要尽可能简单,全体学生对情境中的问题不应存在太大的理解困难,设计的问题情境要能突出将要学习的新知识的本质。
本设计采用了三个数学原型的问题:问题1,“票房收入与售出票数问题”(可用解析式表示);问题2,成绩登记表中的一次数学测试的“成绩与学号问题”(表格表示);问题3,“气温变化与时间问题”(图象表示)。这三个问题从不同层面、不同角度体现函数的“单值对应关系”,也都是学生生活中的真实问题,问题简单易懂,学生容易基于上述生活实例抽象出新的数学概念。
由于不少学生在理解“弹簧问题”时面临列函数关系式的困难,可能冲淡对函数概念的学习,故本节课没有采用该引例。
对于繁难的概念,我们更应注重为学生构建学生所熟悉的、简单的数学现实,化繁为简、化抽象为形象。过难、过繁的背景会成为学生学习抽象新概念的拦路虎。
3、如何引领学生经历数学化、形式化的过程
“数学教学是数学活动的教学”,面对抽象的数学内容,老师会想方设法创设易于学生理解的数学情境。但如何从具体的实例中提炼出数学的素材、形式化为数学知识是教学的关键环节。从具体情境到数学知识的形式化,需要教师为学生搭建合适的“脚手架”,提出能引发学生思考、过渡到数学形式化的问题。本人在学生完成问题情境的几个问题后,提出系列问题“上述几个问题中,分别涉及哪些量的关系?哪些量的变化会引会另一个量的变化?通过哪一个量可以确定另一个量?”
在与学生的交流过程中把重点内容板书,板书注重揭示两个量间的关系,引领学生经历数学概念的形成过程,引导学生认识为什么要引进变量、常量。由问题1~3的共性“单值对应关系”与“脚印与身高”问题中反映的“一对多关系”进行对比抽象出函数的概念,逐步了解如何给数学概念下定义,并理解概念的本质特征。
4、如何引用反例
学生对概念的理解需要经历一个从模糊到清晰的过程,通过正例与反例的对照,才能准确理解概念的内涵。反例引用的时机、反例的量要恰到好处。过早、过多的反例会干扰学生对概念的准确理解。
概念生成的前期提供的各种量的关系中的实例提供的是一个更为广泛的背景,让学生经历从各种关系中抽象出“特殊的单值对应关系”,从而体会产生函数概念的背景。这样的引入有利于避免概念教学中“一个定义,三点注意”的倾向。
在本校上课时,从“气温问题”中的函数图象引导学生发现时间t取定一个值时,所得T的对应值只有一个,学生习惯性地提出问题“温度T取定一个值时,时间t是否唯一确定?”全体同学从正反两个方面认识“唯一确定”的含义,在这样的基础上再归纳出函数的定义,学生较好地掌握函数中的单值对应关系。
在广州开发区中学上课时,在概念的形成前期,忙中出漏,没有抓住“气温问题”中的函数图象讲解“唯一确定”,特别是没有从反面(温度T=8,时间t=12~14)帮助学生理解“唯一性”,也没有强化“脚印与身高”反映的“一对多关系”,只在涉及“单值对应关系”的实例基础上引出概念,也跳过后面提到的三个反例,学生在后面的概念辨析练习中错漏较多,为纠正学生的理解花了九牛二虎之力。
在抚顺上课时,在完成例1、例2的教学后,还用到如下反例:问题2变式“在这次数学测试中,成绩是学号的函数吗?”、问题3变式“北京春季某一天的时间t是气温T的函数吗?”、练习2(3)变式“汽车以60千米/秒的速度匀速行驶,t是s的函数吗?”,学生借助这三个逆向变式,根据生活经验理解“两个量间的对应关系”是否为“单值对应关系”,有利于学生明确“由哪一个量能唯一确定另一个量”,从而更好地理解自变量与函数的关系,更重要的是让学生养成逆向思维的习惯。