5068教学资源网 > 学习宝典 > 数学 > 数学教案 > 八年级 > 初中8年级上册数学教案最新

初中8年级上册数学教案最新

学俊21252分享

初中8年级上册数学教案最新模板

在备课过程中,教师要多去考虑那些可能引发意外生成的教学点,在这些时间节点上多设计几种教学方案,多考虑一些积极应对的策略,这样在实际教学过程中,教师就能够比较自如地应对了。今天小编在这里整理了一些初中8年级上册数学教案最新模板,我们一起来看看吧!

初中8年级上册数学教案最新模板1

教学目标:

1、知识目标:

(1)知道什么是全等形、全等三角形及全等三角形的对应元素;

(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;

(3)能熟练找出两个全等三角形的对应角、对应边。

2、能力目标:

(1)通过全等三角形角有关概念的学习,提高学生数学概念的辨析能力;

(2)通过找出全等三角形的对应元素,培养学生的识图能力。

3、情感目标:

(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;

(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

教学重点:全等三角形的性质。

教学难点:找全等三角形的对应边、对应角

教学用具:直尺、微机

教学方法:自学辅导式

教学过程:

1、全等形及全等三角形概念的引入

(1)动画(几何画板)显示:

问题:你能发现这两个三角形有什么美妙的关系吗?

一般学生都能发现这两个三角形是完全重合的。

(2)学生自己动手

画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。

(3)获取概念

让学生用自己的语言叙述:

全等三角形、对应顶点、对应角以及有关数学符号。

2、全等三角形性质的发现:

(1)电脑动画显示:

问题:对应边、对应角有何关系?

由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。

3、 找对应边、对应角以及全等三角形性质的应用

(1) 投影显示题目:

D、AD∥BC,且AD=BC

分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。

说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。

分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来

说明:根据位置元素来找:有相等元素,其即为对应元素:

然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

说明:利用“运动法”来找

翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素

旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素

平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素

求证:AE∥CF

分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等

∴AE∥CF

说明:解此题的关键是找准对应角,可以用平移法。

分析:AB不是全等三角形的对应边,

但它通过对应边转化为AB=CD,而使AB+CD=AD-BC

可利用已知的AD与BC求得。

说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。

(2)题目的解决

这些题目给出以后,先要求学生独立思考后回答,其它学生补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:

投影显示:

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;

(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;

(3)有公共边的,公共边一定是对应边;

(4)有公共角的,角一定是对应角;

(5)有对顶角的,对顶角一定是对应角;

两个全等三角形中一对最长边(或角)是对应边(或对应角),一对最短边(或最小的角)是对应边(或对应角)

4、课堂独立练习,巩固提高

此练习,主要加强学生的识图能力,同时,找准全等三角形的对应边、对应角,是以后学好几何的关键。

5、小结:

(1)如何找全等三角形的对应边、对应角(基本方法)

(2)全等三角形的性质

(3)性质的应用

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

6、布置作业

a.书面作业P55#2、3、4

b.上交作业(中考题)

初中8年级上册数学教案最新模板2

教材分析

本节课选自人教版数学八年级上册第十五章第四节第一个内容(P165-167)。因式分解是进行代数恒等变形的重要手段之一,它在以后的代数学习中有着重要的应用,如:多项式除法的简便运算,分式的运算,解方程(组)以及二次函数的恒等变形等,因此学好因式分解对于代数知识的后继学习具有相当重要的意义。

本节是因式分解的第1小节,占一个课时,它主要让学生经历从分解因数到分解因式的过程,让学生体会数学思想——类比思想,让学生了解分解因式与整式的乘法运算之间的互逆关系,感受分解因式在解决相关问题中的作用。

学情分析

基于学生在小学已经接触过因数分解的经验,但对于因式分解的概念还完全陌生,因此,本课时在让学生重点理解因式分解概念的基础上,应有意识地培养学 生知识迁移的数学能力,如:类比思想,逆向运算能力等。

学生的技能基础的分析:学生已经熟悉乘法的分配律及其逆运算,并且学习了整式的乘法运算,因此,对于因式分解的引入,学生不会感到陌生,它为今天学习分解因式打下了良好基础。

学生活动经验基础的分析:由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维对于八年级学生还比较生疏,接受起来还有一定的困难,再者本节还没有涉及因式分解的具体方法,所以对于学生来说,寻求因式分解的方法是一个难点。

教学目标

㈠、知识与技能:(1)使学生了解因式分解的意义,理解因式分解的概念。

(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。

㈡、过程与方法:(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。

(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。

(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问 题能力与综合应用能力。

㈢、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。

教学重点和难点

教学重点:因式分解的概念及提公因式法。

教学难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。

教学过程

教学环节

教师活动

预设学生行为

设计意图

活动1:

复习引入

看谁算得快:用简便方法计算:

(1)7/9 ×13-7/9 ×6+7/9 ×2= ; (2)-2.67×132+25×2.67+7×2.67= ;

(3)992–1= 。

学生在计算是分为两类:一是正确应用因数分解的办法进行简便计算;二是不懂正确应用因数分解的办法进行简便计算,而采取实实在在计算办法进行计算。

如果说学生对因式分解还相当陌生的话,相信学生对用简便方法进行计算应该相当熟悉.引入这一步的目的旨在让学生通过回顾用简便方法计算 ——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶.

注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。

活动2:

导入课题

1. P165的探究(略);

2. 看谁想得快:993–99能被哪些数整除?你是怎么得出来的?

学生思考:从以上问题的解决中,你知道解决这些问题的关键是什么?

引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。

活动3:探究新知

看谁算得准:

计算下列式子:

(1)3x(x-1)= ;

(2)m(a+b+c)= ;

(3)(m+4)(m-4)= ;

(4)(y-3)2= ;

(5)a(a+1)(a-1)= ;

根据上面的算式填空:

(1)ma+mb+mc= ;

(2)3x2-3x= ;

(3)m2-16= ;

(4)a3-a= ;

(5)y2-6y+9= 。

学生由整式的乘法的计算逆向得到因式分解(提公因式法)。

在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力。

活动4:

归纳、得出新知

比较以下两种运算的联系与区别:

(1) a(a+1)(a-1)= a3-a

(2) a3-a= a(a+1)(a-1)

在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?

结论:把一个多项式化成几 个整式的积的形式,这种变形叫做把这个多项式因式分解。其中,把多项式中各项的公因式提取出来做为积的一个因式,多项式各项剩下部分做为积的另一个因式这种因式分解的方法叫做提公因式法。

辨一辨:下列变形是因式分解吗?为什么?

(1)a+b=b+a

(2)4x2y–8xy2+1=4xy(x–y)+1

(3)a(a–b)=a2–ab

(4)a2–2ab+b2=(a–b)2

学生讨论、发言对因式分解,特别是提公因式法的认识、理解、看法,并总结出因式分解、提公因式法的定义。

通过学生的讨论,使学生更清楚以下事实:

(1)分解因式与整式的乘法是一种互逆关系;

(2)分解因式的结果要以积的形式表示;

(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式 的次数;

(4)必须分解到每个多项式不能再分解为止。

活动5:应用新知

例题学习:

P166例1、例2(略)

在教师的引导下,学生应用提公因式法共同完成例题。

让学生进一步理解提公因式法进行因式分解。

活动6:课堂练习

1.P167练习;

2. 看谁连得准

x2-y2 (x+1)2

9-25 x 2 y(x -y)

x 2+2x+1 (3-5 x)(3+5 x)

xy-y2 (x+y)(x-y)

3.下列哪些变形是因式分解,为什么?

(1)(a+3)(a -3)= a 2-9

(2)a 2-4=( a +2)( a -2)

(3)a 2-b2+1=( a +b)( a -b)+1

(4)2πR+2πr=2π(R+r)

学生自主完成练习。

通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。

活动7:课堂小结

从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?

学生发言。

通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。

活动8:课后作业

课本P170习题的第1、4大题。

学生自主完成

通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。

板书设计(需要一直留在黑板上主板书)

15.4.1提公因式法 例题

1.因式分解的定义

2.提公因式法

初中8年级上册数学教案最新模板3

一.说教材

本课时是华师大版八年级(上)数学第14章第二节内容,是在掌握勾股定理的基础上对勾股定理的应用之一. 勾股定理是我国古数学的一项伟大成就.勾股定理为我们提供了直角三角形的三边间的数量关系,它的逆定理为我们提供了判断三角形是否属于直角三角形的依据,也是判定两条直线是否互相垂直的一个重要方法,这些成果被广泛应用于数学和实际生活的各个方面.教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析,使学生获得较为直观的印象,通过联系和比较,了解勾股定理在实际生活中的广泛应用. 据此,制定教学目标如下: 1.知识和方法目标:通过对一些典型题目的思考,练习,能正确熟练地进行勾股定理有关计算,深入对勾股定理的理解. 2.过程与方法目标:通过对一些题目的探讨,以达到掌握知识的目的. 3.情感与态度目标:感受数学在生活中的应用,感受数学定理的美. 教学重点:勾股定理的应用. 教学难点:勾股定理的正确使用. 教学关键:在现实情境中捕抓直角三角形,确定好直角三角形之后,再应用勾股定理.

二.说教法和学法

1.以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程. 2.切实体现学生的主体地位,让学生通过观察,分析,讨论,操作,归纳理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力. 3.通过演示实物,引导学生观察,操作,分析,证明,使学生获得新知的成功感受,从而激发学生钻研新知的欲望.

三.教学程序

本节内容的教学主要体现在学生的动手,动脑方面,根据学生的认知规律和学习心理,教学程序设置如下: 一.回顾问:勾股定理的内容是什么? 勾股定理揭示了直角三角形三边之间的关系,今天我们来学习这个定理在实际生活中的应用. 二.新授课例1.如图所示,有一个圆柱,它的高AB等于4厘米,底面周长等于20厘米,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A点相对的C点处的食物,沿圆柱侧面爬行的最短路线是多少?(课本P57图14.2.1)

①学生取出自制圆柱,,尝试从A点到C点沿圆柱侧面画出几条路线.思考:那条路线最短? ②如图,将圆柱侧面剪开展成一个长方形,从A点到C点的最短路线是什么?你画得对吗? ③蚂蚁从A点出发,想吃到C点处的食物,它沿圆柱侧面爬行的最短路线是什么?

思路点拨:引导学生在自制的圆柱侧面上寻找最短路线;提醒学生将圆柱侧面展开成长方形,引导学生观察分析发现“两点之间的所有线中,线段最短”. 学生在自主探索的基础上兴趣高涨,气氛异常的活跃,他们发现蚂蚁从A点往上爬到B点后顺着直径爬向C点爬行的路线是最短的!我也意外的发现了这种爬法是正确的,但是课本上是顺着侧面往上爬的,我就告诉学生:“课本中的圆柱体是没有上盖的”。只有这样课本上的解答才算是完全正确的。例2.(课本P58图14.2.3) 思路点拨:厂门的宽度是足够的,这个问题的关键是观察当卡车位于厂门正中间时其高度是否小于CH,点D在离厂门中线0.8米处,且CD⊥AB, 与地面交于H,寻找出Rt△OCD,运用勾股定理求出

2.3m

CD= = =0.6,CH=0.6+2.3=2.9>2.5可见卡车能顺利通过 .详细解题过程看课本 引导学生完成P58做一做. 三.课堂小练 1.课本P58练习第1,2题. 2.探究: 一门框的尺寸如图所示,一块长3米,宽2.2米的薄木板是否能从门框内通过?为什么?

四.小结直角三角形在实际生活中有更为广泛的应用希望同学们能紧紧抓住直角三角形的性质,学透勾股定理的具体应用,那样就能很轻松的解决现实生活中的许多问题,达到事倍功半的效果。

五.布置作业 课本P60习题14.2第1,2,3题.

初中8年级上册数学教案最新模板4

教学目标:

知识与技能目标:

1.掌握矩形的概念、性质和判别条件。

2.提高对矩形的性质和判别在实际生活中的应用能力。

过程与方法目标:

1.经历探索矩形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法。

2.知道解决矩形问题的基本思想是化为三角形问题来解决,渗透转化归思想。

情感与态度目标:

1.在操作活动过程中,加深对矩形的的认识,并以此激发学生的探索精神。

2.通过对矩形的探索学习,体会它的内在美和应用美。

教学重点:矩形的性质和常用判别方法的理解和掌握。

教学难点:矩形的性质和常用判别方法的综合应用。

教学方法:分析启发法

教具准备:像框,平行四边形框架教具,多媒体课件。

教学过程设计:

一、情境导入:

演示平行四边形活动框架,引入课题。

二、讲授新课:

1.归纳矩形的定义:

问题:从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?(学生思考、回答。)

结论:有一个内角是直角的平行四边形是矩形。

2.探究矩形的性质:

(1)问题:像框除了“有一个内角是直角”外,还具有哪些一般平行四边形不具备的性质?(学生思考、回答.)

结论:矩形的四个角都是直角。

(2)探索矩形对角线的性质:

让学生进行如下操作后,思考以下问题:(幻灯片展示)

在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状.

①随着∠α的变化,两条对角线的长度分别是怎样变化的?

②当∠α是锐角时,两条对角线的长度有什么关系?当∠α是钝角时呢?

③当∠α是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系?

(学生操作,思考、交流、归纳。)

结论:矩形的两条对角线相等.

(3)议一议:(展示问题,引导学生讨论解决)

①矩形是轴对称图形吗?如果是,它有几条对称轴?如果不是,简述你的理由.

②直角三角形斜边上的中线等于斜边长的一半,你能用矩形的有关性质解释这结论吗?

(4)归纳矩形的性质:(引导学生归纳,并体会矩形的“对称美”)

矩形的对边平行且相等;矩形的四个角都是直角;矩形的对角线相等且互相平分;矩形是轴对称图形.

例解:(性质的运用,渗透矩形对角线的“化归”功能)

如图,在矩形ABCD中,两条对角线AC,BD相交于点O,AB=OA=4

厘米,求BD与AD的长。

(引导学生分析、解答)

探索矩形的判别条件:(由修理桌子引出)

(5)想一想:(学生讨论、交流、共同学习)

对角线相等的平行四边形是怎样的四边形?为什么?

结论:对角线相等的平行四边形是矩形.

(理由可由师生共同分析,然后用幻灯片展示完整过程.)

(6)归纳矩形的判别方法:(引导学生归纳)

有一个内角是直角的平行四边形是矩形.

对角线相等的平行四边形是矩形.

三、课堂练习:(出示P98随堂练习题,学生思考、解答。)

四、新课小结:

通过本节课的学习,你有什么收获?

(师生共同从知识与思想方法两方面小结。)

五、作业设计:P99习题4.6第1、2、3题。

板书设计:

1.矩形

矩形的定义:

矩形的性质:

前面知识的小系统图示:

2.矩形的判别条件:

例1

课后反思:在平行四边形及菱形的教学后。学生已经学会自主探索的方法,自己动手猜想验证一些矩形的特殊性质。一些相关矩形的计算也学会应用转化为直角三角形的方法来解决。总的看来这节课学生掌握的还不错。当然合情推理的能力要慢慢的熟练。不可能一下就掌握熟练。

初中8年级上册数学教案最新模板5

教学目标:

情意目标:培养学生团结协作的精神,体验探究成功的乐趣。

能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。

认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。

教学重点、难点

重点:等腰梯形性质的探索;

难点:梯形中辅助线的添加。

教学课件:PowerPoint演示文稿

教学方法:启发法、

学习方法:讨论法、合作法、练习法

教学过程:

(一)导入

1、出示图片,说出每辆汽车车窗形状(投影)

2、板书课题:5梯形

3、练习:下列图形中哪些图形是梯形?(投影)

4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。

5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)

6、特殊梯形的.分类:(投影)

(二)等腰梯形性质的探究

【探究性质一】

思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)

猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)

如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C

想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?

等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。

【操练】

(1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)

(2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)

【探究性质二】

如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)

如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)

等腰梯形性质:等腰梯形的两条对角线相等。

【探究性质三】

问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)

问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)

等腰梯形性质:同以底上的两个内角相等,对角线相等

(三)质疑反思、小结

让学生回顾本课教学内容,并提出尚存问题;

学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。


初中8年级上册数学教案最新相关文章:

2021人教版八年级数学上册教案最新

2021年湘教版八年级数学最新教案

初中数学人教版教案范文五篇

人教版初中数学教师教案五篇

初中数学教案教学设计范文

初中数学教学计划八年级2021

初中八年级数学下册教学设计

初中初一数学上册教学计划2021

2021最新人教版七年级数学上册教案文案

初中数学总教学计划

    37189