九年级数学投影教案模板
推荐文章
九年级数学投影教案2021模板
设计的教学流程主要有:情景引入、活动猜想、实验探究、交流与分析、知识应用五个环节,在每一个环节中都要有具体的方案。今天小编在这里整理了一些九年级数学投影教案2021模板,我们一起来看看吧!
九年级数学投影教案2021模板1
学习目标
1.了解圆周角的概念.
2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
4.熟练掌握圆周角的定理及其推理的灵活运用.
设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题
学习过程
一、 温故知新:
(学生活动)同学们口答下面两个问题.
1.什么叫圆心角?
2.圆心角、弦、弧之间有什么内在联系呢?
二、 自主学习:
自学教材P90---P93,思考下列问题:
1、 什么叫圆周角?圆周角的两个特征: 。
2、 在下面空里作一个圆,在同一弧上作一些圆心角及圆周角。通过圆周角的概念和度量的方法回答下面的问题.
(1)一个弧上所对的圆周角的个数有多少个?
(2).同弧所对的圆周角的度数是否发生变化?
(3).同弧上的圆周角与圆心角有什么关系?
3、默写圆周角定理及推论并证明。
4、能去掉"同圆或等圆"吗?若把"同弧或等弧"改成"同弦或等弦"性质成立吗?
5、教材92页思考?在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?
三、 典型例题:
例1、(教材93页例2)如图, ⊙O的直径AB为10cm,弦AC为6cm,,∠ACB的平分线交⊙O于D,求BC、AD、BD的长。
例2、如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?
四、 巩固练习:
1、(教材P93练习1)
解:
2、(教材P93练习2)
3、(教材P93练习3)
证明:
4、(教材P95习题24.1第9题)
五、 总结反思:
达标检测
1.如图1,A、B、C三点在⊙O上,∠AOC=100°,则∠ABC等于( ).
A.140° B.110° C.120° D.130°
(1) (2) (3)
2.如图2,∠1、∠2、∠3、∠4的大小关系是( )
A.∠4<∠1<∠2<∠3 B.∠4<∠1=∠3<∠2
C.∠4<∠1<∠3∠2 D.∠4<∠1<∠3=∠2
3.如图3,(中考题)AB是⊙O的直径,BC,CD,DA是⊙O的弦,且BC=CD=DA,则∠BCD等于( )
A.100° B.110° C.120° D.130°
4.半径为2a的⊙O中,弦AB的长为2 a,则弦AB所对的圆周角的度数是________.
5.如图4,A、B是⊙O的直径,C、D、E都是圆上的点,则∠1+∠2=_______.
(4) (5)
6.(中考题)如图5, 于 ,若 ,则
7.如图,弦AB把圆周分成1:2的两部分,已知⊙O半径为1,求弦长AB.
拓展创新
1.如图,已知AB=AC,∠APC=60°
(1)求证:△ABC是等边三角形.
(2)若BC=4cm,求⊙O的面积.
3、教材P95习题24.1第12、13题。
布置作业教材P95习题24.1第10、11题。
九年级数学投影教案2021模板2
教学内容
一元二次方程概念及一元二次方程一般式及有关概念. 教学目标
2
了解一元二次方程的概念;一般式ax+bx+c=0(a≠0)及其派生的概念;?应用一元二次方程概念解决一些简单题目.
1.通过设臵问题,建立数学模型,?模仿一元一次方程概念给一元二次方程下定义. 2.一元二次方程的一般形式及其有关概念. 3.解决一些概念性的题目.
4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情. 重难点关键
1.?重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题. 2.难点关键:通过提出问题,建立一元二次方程的数学模型,?再由一元一次方程的概念迁移到一元二次方程的概念. 教学过程
一、复习引入
学生活动:列方程. 问题(1)古算趣题:“执竿进屋”
笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。 有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。 借问竿长多少数,谁人算出我佩服。
如果假设门的高为x?尺,?那么,?这个门的宽为_______?尺,长为_______?尺, ?根据题意,?得________. 整理、化简,得:__________. 二、探索新知
学生活动:请口答下面问题.
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们次数是几次? (3)有等号吗?还是与多项式一样只有式子? 老师点评:(1)都只含一个未知数x;(2)它们的次数都是2次的;(3)?都有等号,是方程. 因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的次数是2(二次)的方程,叫做一元二次方程.
2
一般地,任何一个关于x的一元二次方程,?经过整理,?都能化成如下形式ax+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
2
一个一元二次方程经过整理化成ax+bx+c=0(a≠0)后,其中ax是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
2
分析:一元二次方程的一般形式是ax+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.
解:略
注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.
2
例2.(学生活动:请二至三位同学上台演练) 将方程(x+1)+(x-2)(x+2)=?1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.
22
分析:通过完全平方公式和平方差公式把(x+1)+(x-2)(x+2)=1化成ax+bx+c=0(a≠0)的形式. 解:略
三、巩固练习
教材 练习1、2
补充练习:判断下列方程是否为一元二次方程?
(1)3x+2=5y-3 (2) x=4 (3) 3x-2
2
22
52 2 2
=0 (4) x-4=(x+2) (5) ax+bx+c=0 x
四、应用拓展
22
例3.求证:关于x的方程(m-8m+17)x+2mx+1=0,不论m取何值,该方程都是一元二次方程.
2
分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m-8m+17?≠0即可.
22
证明:m-8m+17=(m-4)+1
2
∵(m-4)≥0
22
∴(m-4)+1>0,即(m-4)+1≠0
∴不论m取何值,该方程都是一元二次方程.
2
? 练习: 1.方程(2a—4)x—2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为
一元一次方程?
/4m/-4
2.当m为何值时,方程(m+1)x+27mx+5=0是关于的一元二次方程 五、归纳小结(学生总结,老师点评) 本节课要掌握:
2
(1)一元二次方程的概念;(2)一元二次方程的一般形式ax+bx+c=0(a≠0)?和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用. 六、布臵作业
九年级数学投影教案2021模板3
一、素质教育目标
(一)知识教学点
使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.
(二)能力训练点
逐步培养学生会观察、比较、分析、概括等逻辑思维能力.
(三)德育渗透点
引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.
二、教学重点、难点
1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.
2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.
三、教学步骤
(一)明确目标
1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米?
2.长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?
3.若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少?
4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?
前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.
通过四个例子引出课题.
(二)整体感知
1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值.
学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.
2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?
这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.
(三)重点、难点的学习与目标完成过程
1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.
2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:
若一组直角三角形有一个锐角相等,可以把其
顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3……落在同一条直线上,则斜边AB1,AB2,AB3……落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴
形中,∠A的对边、邻边与斜边的比值,是一个固定值.
通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.
而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用.
练习题为 作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来.
(四)总结与扩展
1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.
教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.
2.扩展:当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.
四、布置作业
本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念.
五、板书设计
九年级数学投影教案2021模板4
教学内容
1.一元二次方程根的概念;
2.?根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目. 教学目标
了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题. 提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根.同时应用以上的几个知识点解决一些具体问题. 重难点关键
1.重点:判定一个数是否是方程的根;
2.?难点关键:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.
教学过程
一、复习引入
学生活动:请同学独立完成下列问题.
2
问题1.前面有关“执竿进屋”的问题中,我们列得方程x-8x+20=0
列表:
问题2列表:
3
老师点评(略) 二、探索新知 提问:(1)问题1中一元二次方程的解是多少?问题2?中一元二次方程的解是多少? (2)如果抛开实际问题,问题2中还有其它解吗?
22
老师点评:(1)问题1中x=2与x=10是x-8x+20=0的解,问题2中,x=4是x+7x-44=0的解.(2)如
果抛开实际问题,问题2中还有x=-11的解.
一元二次方程的解也叫做一元二次方程的根.
2
回过头来看:x-8x+20=0有两个根,一个是2,另一个是10,都满足题意;但是,问题2中的x=-11的根不满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.
2
例1.下面哪些数是方程2x+10x+12=0的根? -4,-3,-2,-1,0,1,2,3,4.
分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可.
2
解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x+10x+12=0的两根.
2
例2.若x=1是关于x的一元二次方程a x+bx+c=0(a≠0)的一个根,求代数式2007(a+b+c)的值
2 2
练习:关于x的一元二次方程(a-1) x+x+a-1=0的一个根为0,则求a的值
点拨:如果一个数是方程的根,那么把该数代入方程,一定能使左右两边相等,这种解决问题的思维方法经常用到,同学们要深刻理解.
例3.你能用以前所学的知识求出下列方程的根吗?
222
(1)x-64=0 (2)3x-6=0 (3)x-3x=0
分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义. 解:略
三、巩固练习
教材 思考题 练习1、2.
四、归纳小结(学生归纳,老师点评) 本节课应掌握:
(1)一元二次方程根的概念;
(2)要会判断一个数是否是一元二次方程的根;
(3)要会用一些方法求一元二次方程的根.(“夹逼”方法; 平方根的意义) 六、布臵作业
1.教材 复习巩固3、4 综合运用5、6、7 拓广探索8、9. 2.选用课时作业设计.
第3课时 21.2.1 配方法
教学内容
运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程. 教学目标
理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.
2
提出问题,列出缺一次项的一元二次方程ax+c=0,根据平方根的意义解出这个方程,然后知识迁移到解
2
a(ex+f)+c=0型的一元二次方程. 重难点关键
2
1.重点:运用开平方法解形如(x+m)=n(n≥0)的方程;领会降次──转化的数学思想.
22
2.难点与关键:通过根据平方根的意义解形如x=n,知识迁移到根据平方根的意义解形如(x+m)=n(n≥0)的方程. 教学过程
一、复习引入
学生活动:请同学们完成下列各题 问题1.填空
222222
(1)x-8x+______=(x-______);(2)9x+12x+_____=(3x+_____);(3)x+px+_____=(x+____). 问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(
p2p
) . 22
问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程于一元一次方程有什么不同?二次如
何转化成一次?怎样降次?以前学过哪些降次的方法? 二、探索新知
4
上面我们已经讲了x=9,根据平方根的意义,直接开平方得x=〒3,如果x换元为2t+1,即(2t+1)=9,能否也用直接开平方的方法求解呢? (学生分组讨论)
老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=〒3 即2t+1=3,2t+1=-3
方程的两根为t1=1,t2=--2
2 2 2
例1:解方程:(1)(2x-1)=5 (2)x+6x+9=2 (3)x-2x+4=-1
22
分析:很清楚,x+4x+4是一个完全平方公式,那么原方程就转化为(x+2)=1.
2
解:(2)由已知,得:(x+3)=2 直接开平方,得:x+3=
即
所以,方程的两根x1
x2
2
例2.市政府计划2年内将人均住房面积由现在的10m提高到14.4m,求每年人均住房面积增长率. 分析:设每年人均住房面积增长率为x.?一年后人均住房面积就应该是10+?10x=10(1+x);二年后人均
2
住房面积就应该是10(1+x)+10(1+x)x=10(1+x) 解:设每年人均住房面积增长率为x,
2
则:10(1+x)=14.4
2
(1+x)=1.44
直接开平方,得1+x=〒1.2 即1+x=1.2,1+x=-1.2
所以,方程的两根是x1=0.2=20%,x2=-2.2
因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去. 所以,每年人均住房面积增长率应为20%.
(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么? 共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.?我们把这种思想称为“降次转化思想”.
三、巩固练习
教材 练习. 四、应用拓展
例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?
分析:设该公司二、三月份营业额平均增长率为x,?那么二月份的营业额就应该是(1+x),三月份的营
2
业额是在二月份的基础上再增长的,应是(1+x). 解:设该公司二、三月份营业额平均增长率为x.
2
那么1+(1+x)+(1+x)=3.31 把(1+x)当成一个数,配方得:
22
1232
)=2.56,即(x+)=2.56 22333
x+=〒1.6,即x+=1.6,x+=-1.6
222
(1+x+
方程的根为x1=10%,x2=-3.1
因为增长率为正数,
所以该公司二、三月份营业额平均增长率为10%. 五、归纳小结
本节课应掌握: 由应用直接开平方法解形如x=p(p≥0),那么x=
解形如(mx+n)=p(p≥0),那么mx+n=
六、布臵作业
1.教材 复习巩固1、2.
第4课时 22.2.1 配方法(1)
教学内容
间接即通过变形运用开平方法降次解方程. 教学目标
5
2
2
p<0则方程无解
九年级数学投影教案2021模板5
教材内容
1.本单元教学的主要内容:
二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.
2.本单元在教材中的地位和作用:
二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.
教学目标
1.知识与技能
(1)理解二次根式的概念.
(2)理解 (a≥0)是一个非负数,( )2=a(a≥0), =a(a≥0).
(3)掌握 • = (a≥0,b≥0), = • ;
= (a≥0,b>0), = (a≥0,b>0).
(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.
2.过程与方法
(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.
(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算.
(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.
(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.
3.情感、态度与价值观
通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.
教学重点
1.二次根式 (a≥0)的内涵. (a≥0)是一个非负数;( )2=a(a≥0); =a(a≥0)及其运用.
2.二次根式乘除法的规定及其运用.
3.最简二次根式的概念.
4.二次根式的加减运算.
教学难点
1.对 (a≥0)是一个非负数的理解;对等式( )2=a(a≥0)及 =a(a≥0)的理解及应用.
2.二次根式的乘法、除法的条件限制.
3.利用最简二次根式的概念把一个二次根式化成最简二次根式.
教学关键
1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.
2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.
单元课时划分
本单元教学时间约需11课时,具体分配如下:
21.1 二次根式 3课时
21.2 二次根式的乘法 3课时
21.3 二次根式的加减 3课时
教学活动、习题课、小结 2课时
21.1 二次根式
第一课时
教学内容
二次根式的概念及其运用
教学目标
理解二次根式的概念,并利用 (a≥0)的意义解答具体题目.
提出问题,根据问题给出概念,应用概念解决实际问题.
教学重难点关键
1.重点:形如 (a≥0)的式子叫做二次根式的概念;
2.难点与关键:利用“ (a≥0)”解决具体问题.
教学过程
一、复习引入
(学生活动)请同学们独立完成下列三个问题:
问题1:已知反比例函数y= ,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.
问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.
问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.
老师点评:
问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x= ,所以所求点的坐标( , ).
问题2:由勾股定理得AB=
问题3:由方差的概念得S= .
二、探索新知
很明显 、 、 ,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.
(学生活动)议一议:
1.-1有算术平方根吗?
2.0的算术平方根是多少?
3.当a<0, 有意义吗?
老师点评:(略)
例1.下列式子,哪些是二次根式,哪些不是二次根式: 、 、 、 (x>0)、 、 、- 、 、 (x≥0,y≥0).
分析:二次根式应满足两个条件:第一,有二次根号“ ”;第二,被开方数是正数或0.
解:二次根式有: 、 (x>0)、 、- 、 (x≥0,y≥0);不是二次根式的有: 、 、 、 .
例2.当x是多少时, 在实数范围内有意义?
分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0, 才能有意义.
解:由3x-1≥0,得:x≥
当x≥ 时, 在实数范围内有意义.
三、巩固练习
教材P练习1、2、3.
四、应用拓展
例3.当x是多少时, + 在实数范围内有意义?
分析:要使 + 在实数范围内有意义,必须同时满足 中的≥0和 中的x+1≠0.
解:依题意,得
由①得:x≥-
由②得:x≠-1
当x≥- 且x≠-1时, + 在实数范围内有意义.
例4(1)已知y= + +5,求 的值.(答案:2)
(2)若 + =0,求a2004+b2004的值.(答案: )
五、归纳小结(学生活动,老师点评)
本节课要掌握:
1.形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.
2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.
六、布置作业
1.教材P8复习巩固1、综合应用5.
2.选用课时作业设计.
3.课后作业:《同步训练》
第一课时作业设计
一、选择题 1.下列式子中,是二次根式的是( )
A.- B. C. D.x
2.下列式子中,不是二次根式的是( )
A. B. C. D.
3.已知一个正方形的面积是5,那么它的边长是( )
A.5 B. C. D.以上皆不对
二、填空题
1.形如________的式子叫做二次根式.
2.面积为a的正方形的边长为________.
3.负数________平方根.
三、综合提高题
1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少?
2.当x是多少时, +x2在实数范围内有意义?
3.若 + 有意义,则 =_______.
4.使式子 有意义的未知数x有( )个.
A.0 B.1 C.2 D.无数
5.已知a、b为实数,且 +2 =b+4,求a、b的值.
第一课时作业设计答案:
一、1.A 2.D 3.B
二、1. (a≥0) 2. 3.没有
三、1.设底面边长为x,则0.2x2=1,解答:x= .
2.依题意得: ,
∴当x>- 且x≠0时, +x2在实数范围内没有意义.
3.
4.B
5.a=5,b=-4
21.1 二次根式(2)
第二课时
教学内容
1. (a≥0)是一个非负数;
2.( )2=a(a≥0).
教学目标
理解 (a≥0)是一个非负数和( )2=a(a≥0),并利用它们进行计算和化简.
通过复习二次根式的概念,用逻辑推理的方法推出 (a≥0)是一个非负数,用具体数据结合算术平方根的意义导出( )2=a(a≥0);最后运用结论严谨解题.
教学重难点关键
1.重点: (a≥0)是一个非负数;( )2=a(a≥0)及其运用.
2.难点、关键:用分类思想的方法导出 (a≥0)是一个非负数;用探究的方法导出( )2=a(a≥0).
教学过程
一、复习引入
(学生活动)口答
1.什么叫二次根式?
2.当a≥0时, 叫什么?当a<0时, 有意义吗?
老师点评(略).
二、探究新知
议一议:(学生分组讨论,提问解答)
(a≥0)是一个什么数呢?
老师点评:根据学生讨论和上面的练习,我们可以得出
(a≥0)是一个非负数.
做一做:根据算术平方根的意义填空:
( )2=_______;( )2=_______;( )2=______;( )2=_______;
( )2=______;( )2=_______;( )2=_______.
老师点评: 是4的算术平方根,根据算术平方根的意义, 是一个平方等于4的非负数,因此有( )2=4.
同理可得:( )2=2,( )2=9,( )2=3,( )2= ,( )2= ,( )2=0,所以
( )2=a(a≥0)
例1 计算
1.( )2 2.(3 )2 3.( )2 4.( )2
分析:我们可以直接利用( )2=a(a≥0)的结论解题.
解:( )2 = ,(3 )2 =32•( )2=32•5=45,
( )2= ,( )2= .
三、巩固练习
计算下列各式的值:
( )2 ( )2 ( )2 ( )2 (4 )2
四、应用拓展
例2 计算
1.( )2(x≥0) 2.( )2 3.( )2
4.( )2
分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;
(4)4x2-12x+9=(2x)2-2•2x•3+32=(2x-3)2≥0.
所以上面的4题都可以运用( )2=a(a≥0)的重要结论解题.
解:(1)因为x≥0,所以x+1>0
( )2=x+1
(2)∵a2≥0,∴( )2=a2
(3)∵a2+2a+1=(a+1)2
又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴ =a2+2a+1
(4)∵4x2-12x+9=(2x)2-2•2x•3+32=(2x-3)2
又∵(2x-3)2≥0
∴4x2-12x+9≥0,∴( )2=4x2-12x+9
例3在实数范围内分解下列因式:
(1)x2-3 (2)x4-4 (3) 2x2-3
分析:(略)
五、归纳小结
本节课应掌握:
1. (a≥0)是一个非负数;
2.( )2=a(a≥0);反之:a=( )2(a≥0).
六、布置作业
1.教材P8 复习巩固2.(1)、(2) P9 7.
2.选用课时作业设计.
3.课后作业:《同步训练》