5068教学资源网 > 学习宝典 > 数学 > 学习园地 > 知识积累 > 初中数学圆和其他的知识点

初中数学圆和其他的知识点

跃瀚21373分享

初中数学圆的知识点和其他的知识点

  学习中的困难莫过于一节一节的台阶,虽然台阶很陡,但只要一步一个脚印的踏,攀登一层一层的台阶,才能实现学习的理想。下面是小编给大家整理的有关初中数学圆和其他的知识点,希望对大家有所帮助。

  圆的相关概念

  1、圆的定义

  在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

  2、圆的几何表示

  以点O为圆心的圆记作“⊙O”,读作“圆O”

  二、弦、弧等与圆有关的定义

  (1)弦

  连接圆上任意两点的线段叫做弦。(如图中的AB)

  (2)直径

  经过圆心的弦叫做直径。(如途中的CD)

  直径等于半径的2倍。

  (3)半圆

  圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

  (4)弧、优弧、劣弧

  圆上任意两点间的部分叫做圆弧,简称弧。

  弧用符号“⌒”表示,以A,B为端点的弧记作“ ”,读作“圆弧AB”或“弧AB”。

  大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)

  三、垂径定理及其推论

  垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

  推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

  (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

  (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

  推论2:圆的两条平行弦所夹的弧相等。

  垂径定理及其推论可概括为:

  过圆心

  垂直于弦

  直径 平分弦 知二推三

  平分弦所对的优弧

  平分弦所对的劣弧

  四、圆的对称性

  1、圆的轴对称性

  圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

  2、圆的中心对称性

  圆是以圆心为对称中心的中心对称图形。

  五、弧、弦、弦心距、圆心角之间的关系定理

  1、圆心角

  顶点在圆心的角叫做圆心角。

  2、弦心距

  从圆心到弦的距离叫做弦心距。

  3、弧、弦、弦心距、圆心角之间的关系定理

  在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。

  推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

  六、圆周角定理及其推论

  1、圆周角

  顶点在圆上,并且两边都和圆相交的角叫做圆周角。

  数学知识点归纳

  1、绝对值

  一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

  (1)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即:﹝另有两种写法﹞

  (2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值就是数轴上表示这个数的点到原点的距离.

  (3)几个非负数的和等于零则每个非负数都等于零。

  注意:│a│≥0,符号"││"是"非负数"的标志;数a的绝对值只有一个;处理任何类型的题目,只要其中有"││"出现,其关键一步是去掉"││"符号。

  2、解一元二次方程

  解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。

  (1)直接开平方法:

  用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m.

  直接开平方法就是平方的逆运算.通常用根号表示其运算结果.

  (2)配方法

  通过配成完全平方式的方法,得到一元二次方程的根的方法。这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。

  1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)

  2)系数化1:将二次项系数化为1

  3)移项:将常数项移到等号右侧

  4)配方:等号左右两边同时加上一次项系数一半的平方

  5)变形:将等号左边的代数式写成完全平方形式

  6)开方:左右同时开平方

  7)求解:整理即可得到原方程的根

  (3)公式法

  公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。

  3、圆的必考知识点

  (1)圆

  在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数条对称轴。

  (2)圆的相关特点

  1)径

  连接圆心和圆上的任意一点的线段叫做半径,字母表示为r

  通过圆心并且两端都在圆上的线段叫做直径,字母表示为d

  直径所在的直线是圆的对称轴。在同一个圆中,圆的直径d=2r

  2)弦

  连接圆上任意两点的线段叫做弦.在同一个圆内最长的弦是直径。直径所在的直线是圆的对称轴,因此,圆的对称轴有无数条。

  3)弧

  圆上任意两点间的部分叫做圆弧,简称弧,以“⌒”表示。

  大于半圆的弧称为优弧,小于半圆的弧称为劣弧,所以半圆既不是优弧,也不是劣弧。优弧一般用三个字母表示,劣弧一般用两个字母表示。优弧是所对圆心角大于180度的弧,劣弧是所对圆心角小于180度的弧。

  在同圆或等圆中,能够互相重合的两条弧叫做等弧。

  4)角

  顶点在圆心上的角叫做圆心角。

  顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。圆周角等于相同弧所对的圆心角的一半。

    37426