六年级数学下册人教版教案
作为一名为他人授业解惑的教育工作者,时常需要编写教案,教案有助于顺利而有效地开展教学活动。教案应该怎么写才好呢?下面是小编帮大家整理的六年级数学下册人教版教案,仅供参考,希望能够帮助到大家。
六年级数学下册人教版教案1
教学内容:
比较正数和负数的大小。
教学目的:
1、借助数轴初步学会比较正数、0和负数之间的大小。
2、初步体会数轴上数的顺序,完成对数的结构的初步构建。
教学重、难点:负数与负数的比较。
教学过程:
一、复习:
1、读数,指出哪些是正数,哪些是负数?
-8 5.6 +0.9 - + 0 -82
2、如果+20%表示增加20%,那么-6%表示 。
二、新授:
(一)教学例3:
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)
2、出示例3:
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)引导学生观察:
A、从0起往右依次是?从0起往左依次是?你发现什么规律?
B、在数轴上除可以表示整数外,还可以表示分数和小数。请学生在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?
(7)练习:做一做的第1、2题。
(二)教学例4:
1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”
5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。
7、练习:做一做第3题。
三、巩固练习
1、练习一第4、5题。
2、练习一第6题。
3、某日傍晚,黄山的气温由上午的零上2摄氏度下降7摄氏度,这天傍晚黄山的气温是 摄氏度。
四、全课总结
(1)在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)负数比0小,正数比0大,负数比正数小。
第二课教学反思:
许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。
例3——两个不同层面的拓展:
1、在数轴上表示数要求的拓展。
数轴除可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。
同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。
2、渗透负数加减法
教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。
例4——薄书读厚、厚书读薄。
薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)
例4教材只提出一个大的'问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘三种不同类型,一一请学生介绍比较方法,将薄书读厚。
将厚书读薄——无论哪种类型,比较方法万变不离其宗。
六年级数学下册人教版教案2
教学目标
1、知识与技能 :使学生理解反比例的意义,并能正确判断成反比例的量。培养学生观察概括的能力和学习方法的迁移能力。
2、过程与方法 :经历反比例意义的探究过程,通过学生的讨论分析合作,使学生进一步认识事物之间的联系和发展变化的规律,体验观察比较,推理归纳的学习方法。
3、情感态度与价值观 :通过一系列富有探究性的问题,进一步渗透自主学习和与他人合作交流的意识和探究精神,激发学习数学的热情。
教学重难点
重点:理解反比例的意义、正反比例的比较。
难点:正确判断两个量是否成反比例
教学工具
PPT课件
教学过程
(一)、回忆旧知,引出新课。
1、复述回顾:
(1)、什么叫做成正比例的量?
(2) 判定两种量成正比例的关键是什么?
(3)、判定下面两种量是否成正比例?
A、轮船行驶的速度一定,行驶的路程和时间。
B、每小时织布的米数一定,织布总米数和时间。
C、当圆柱体的高度一定时,体积和底面积。
2、引出课题:这是我们上节课学习的内容——成正比例的量,今天我们继续学习这些常用的数量关系之间的一些特征。当圆柱体的体积一定时,底面积和高度又有什么态度呢? (板书:成反比例的量)
(二)、自主学习,探索新知。
1.探究反比例的意义
今天老师给大家带来了一个实验,在实验之前,提出实验要求。
(1)、记录杯子里水的高度,把表格中补充完整。
(2)、观察水的高度是如何变化的?
教师播放实验。
水的高度是怎样随着底面积的变化而变化的?
3、观看实验记录单,回答三个问题。
①表格中有哪两种量?
② 水的高度是怎样随着底面积的变化而变化的?
③相对应的杯子的底面积和水的高度的乘积分别是多少?
教师据学生汇报说明:在水的高度和底面积这两种相关联的量中,一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同的倍数。相对应的两个数的乘积是一定的。像这样的两种量,叫做成反比例的量,它们的关系叫反比例关系。
4、课件展示反比例的意义,请学生回答判断两种量成反比例的关键是什么?
学生小组内讨论得出判断两种量成反比例的关键是有三个条件,1、两种相关联的量;2、变化方向相反;3、乘积一定。
3.说一说:生活中还有哪些量成反比例关系?
师:想一想在日常生活中,还有哪些量成正比例关系谁给我们来举个例子吧。
(1)学生自由举例。
(2)师讲述:日常生活和生产中有很多相关联的量,有的成反比例,有的相关联,但不成比例。判断两种相关联的量是否成反比例,要看这两个量的积是否一定,只有积一定,这两个量才成反比例
三、巩固练习。
(一)、基础练习
1、判断下面每题中的两种量是不是成正比例,并说明理由。
(1)轮船行驶的速度一定,行驶的路程和时间。
(2)每小时织布的米数一定,织布总米数和时间。
(3)当圆柱体的高度一定时,体积和底面积。
(1)、表格中有( )和( )两种相关联的量。
(2)、写出这两种量中相对应的两个数的积,并比较大小。
(3)、这个积表示( )。
(4)、表中的相关联的两种量成反比例吗?为什么?
2、判断下面每题中的两种量是不是成反比例,是“√ ”,不是“×”。
(1)煤的量一定,每天的烧煤量和能够烧的天数. ( )
(2)种子的总量一定,每公顷的播种量和播种的公顷数. ( )
(3)李叔叔从家到工厂,骑自行车的速度和所需的时间. ( )
(4)华容做12道数学题,做完的题和没有做的题. ( )
四、积极应用,拓展新知。
出示课件,正、反比例的例题,请学生比较,正、反比例的相同点、和不同点?把表格补充完整。
学生小组内讨论,得出答案。
五、拓展练习。
1、判断下面每题中的两种量成比例吗?并说明理由。
(1)、长方形的面积一定,它的长和宽。 ( )
(2)、轮船行驶的速度一定,行驶的路程和时间。 ( )
(3)、生产电视机的总台数一定,每天生产的台数和所用的天数。 ( )
(4)、小麦每公顷的产量一定,小麦的公顷数和总产量。 ( )
(5)、矿泉水瓶中喝掉的水和剩下的水。 ( )
(6)、圆的半径和它的面积。 ( )
(7)、铺地面积一定,方砖面积与所需块数。 ( )
六、课堂小结。
通过这节课的学习,你有什么收获?想挑战一下自我吗?好!请同学们认真完成堂堂清练习题。
六年级数学下册人教版教案3
教学目标:
1.使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
2.使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。
3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
教学重点:初步认识正数和负数以及读法和写法。
教学难点:理解0既不是正数,也不是负数。
教学具准备:多媒体课件、温度计、练习纸、卡片等。
教学过程:
一、游戏导入(感受生活中的相反现象)
1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。
2、下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。②知识竞赛中,五(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄氏度(零下10摄氏度)。
说明什么是相反意义的量(意义正好相反)
3、谈话:周老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
二、教学例1
1、认识温度计,理解用正负数来表示零上和零下的温度。
课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。
这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?
B、现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。
(2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。
(3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?
(4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。
① 上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
负号能不能省略不写?为什么?
② 北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
(5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。
2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)
3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。
4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)
1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。
2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?
3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。
你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。
4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?
(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。
吐鲁番盆地的海拔可以记作:-155米。(板书)
(2)小小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。
四、小组讨论,归纳正数和负数。
六年级数学下册人教版教案4
教学目标:
1.使学生进一步理解比例的意义,懂得比例各部分名称。
2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。
3.能运用比例的基本性质判断两个比能否组成比例。
教学重点:
比例的基本质性。
教学难点:
发现并概括出比例的基本质性。
教具准备:
多媒体课件
教学过程:
一、旧知铺垫
1.什么叫做比例?
2.应用比例的意义,判断下面的比能否组成比例。
0.5:0.25和0.2:0.4
0.5 :0.2和5:2
1/2:1/3 和6 : 4
0.2:0.8和1:4
二、探索新知
1.比例各部分名称。
(1)教师说明组成比例的四个数的名称。
板书
组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。
例如:2.4:1.6 = 60:40
内项:1.6 6o
外项:2.4 40
(2)学生认一认,说一说比例中的外项和内项。让学生再写出几个比例。
如:2.4 :1.6 = 60:40
外 内 内 外
项 项 项 项
2.比例的基本性质。
你能发现比例的外项和内项有什么关系吗?
(1) 学生独立探索其中的规律。
(2) 与同学交流你的发现。
(3) 汇报你的发现,全班交流。(师作适当的补充)
在比例里,两个内项的积等于两个外项的积。
板书
两个外项的积是2.440=96
两个内项的积是1.660=96
外项的积等于内项的积。
(4) 举例说明,检验发现。
0.6 :0.5=1.2: 1
两个外项的积是 0.61 =0.6
两个内项的积是0.51.2=0.6
外项的积等于内项的积。
如果把比例改成分数形式呢?
如:2.4/1.6 = 60/40
3.440=1.660
等号两边的分子和分母分别交叉相乘,所得的积相等。
(5) 学生归纳。
在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。
4.填一填。
(1)1/2:1/5 =1/4:1/10
( )( )=( )( )
(2)0.8:1.2=4:6
( )( )=( )( )
(3)45=210
4:( )=( ):( )
5.做一做。
完成课本中的做一做。
6.课堂小结
(1) 说一说比例的基本性质。
(2) 你可以用什么方法来判断两个比能否组成比例(引导学生总结说出两种方法,重点让学生理解掌握比例的基本性质,到此,学生要学会用两种方法判断两个比能否组成比例;1.比值是否相等;2.内项之积是否等于内项之积。)
三、巩固练习
完成课文练习六第4~6题。
补充习题
一题多变化,动脑解决它
(1)在比例里,两个内项的积是18,
其中一个外项是2,另一个外项是()。
(2)如果5a=3b,那么, = ,
(3)a∶8=9∶b,那么,ab=( )
教学反思:
比例的各部分名称通过学生自学,老师提问,完成的较好。让学生通过计算内项之积和外项之积发现比例的基本性质。然后大量的练习巩固新知。
六年级数学下册人教版教案5
教学目标
1. 理解圆柱体积公式的推导过程,掌握计算公式。
2. 体会数学转化思想,培养学生探究意识恒文观察、操作、分析和概括能力,能运用公式计算圆柱的体积,并能应用公式解决一些实际问题。
3. 感受探索数学奥秘的乐趣,培养学习数学的积极情感,
教学重难点
教学重点:掌握和运用圆柱体积计算公式
教学难点:圆柱体积公式的推导过程
教学过程
一、复习导入
同学们,我们的图形世界十分丰富,回忆一下,什么叫做物体的体积?我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?长方体的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?
出示学习目标:
理解圆柱体积公式的推导过程,掌握计算公式,体会数学转化思想。
能运用公式计算圆柱的体积,并能应用公式解决一些实际问题。
二、图柱转化,自主探究,验证猜想。
(一)猜想。
1、下面长方体、正方体和圆柱的底面积都相等,高也相等
(1).长方体和正方体的体积相等吗?为什么?
(2).猜一猜,圆柱的体积与长方体、正方体 的体积相等吗?用什么办法验证呢?
2、大家看圆柱的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?(演示课件:圆转化成长方形,推导圆面积公式的过程。)
[数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师由复习圆面积公式的推导过程入手,实现知识的迁移。]
3、引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?揭示课题:圆柱的体积。
(二)操作验证。
1、请学生拿出圆柱体的演示学具,以小组为单位,联想圆形面积的转化方式,合作探究将圆柱转化为长方体的方法。
在操作时,学生分组边操作边讨论以下问题:
①拼成的近似长方体的体积与原来的圆柱体积有什么关系?
②拼成的近似长方体的底面积与原来圆柱的底面积有什么关系?
?.拼成的近似长方体的高与原来的圆柱的高有什么关系?
2、小组代表汇报
(学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励)
3、电脑演示操作
(1)电脑演示圆柱体转化成长方体的过程:
仔细观察:圆柱体转化成一个长方体后,长方体的长相当于圆柱的什么?长方体的宽和高又相当于圆柱的什么?
动画演示:把圆柱的底面平均分成32份、64份,切开后拼成的物体会有什么变化?
(分的分数越多,拼成的图形就越接近长方体)
(2)根据学生的观察、分析、推想,老师完成板书:
长方体的体积=底面积×高
圆柱的体积=底面积×高
V=Sh
(3)你的猜想正确吗?学生齐读圆柱的体积计算公式。
三、练习巩固,灵活应用
闯关1.
1、填表。(课件)
2、一根圆柱形钢材,横截面的面积是50平方厘米,长是2米。它的体积是多少?
让学生试做,集体反馈。
闯关2.想一想:如果已知圆柱底面的半径(r)和高(h),圆柱的体积的计算公式是什么?如果已知圆柱底面的直径(d)和高(h)呢?如果已知圆柱的底面周长(C)和高(h)呢?
学生讨论、交流、汇报。
小结:解决以上问题的关键是先求出什么?(生:底面积)
闯关3.
1、把一个圆柱的底面分成许多相等的扇形,然后把圆柱切开,可以拼成一个近似的( ),它的底面积等于圆柱的( ),高就是( )的高,因为长方体的体积等于底面积乘高,所以圆柱的体积等于( )乘( ),用字母表示是( )。
2、圆柱底面半径为r厘米,高为h厘米,体积v=( )立方厘米
学生在练习本上独立完成,集体反馈。
3、我是小法官
1.正方体、长方体、圆柱体的底面积和高相等,他们体积也相等。( )
2.长方体、正方体、圆柱体的体积都 可以用底面积乘高的方法来计算。( )
3.圆柱体的底面积越大,它的 体积越大。( )
4.圆柱体的高越长,它的体积越大。( )
5.如果圆柱体的底面半径扩大2倍,高不变,体积也扩大2倍.( )
4、填空
1.一个长方体和一个圆柱的体积相等,高也相等,那么它们的底面积( )。
2. 一根横截面面积是10平方厘米的圆柱形钢材,长是2米,它的体积是( )立方厘米。
拓展:把一根圆柱形木材横截成2段,表面积增加16平方厘米,它的底面积是多少平方厘米?如果这根木材长2.5米,它的体积是多少立方厘米?
四、课堂小结
学习本节课你有哪些收获?还有哪些疑惑?(生汇报收获)
五、布置作业
教科书第21页练习三第1-4题。
六年级数学下册人教版教案相关文章: