5068教学资源网 > 学习宝典 > 数学 > 数学教案 > 八年级 > 华东师大版八年级数学教案例文

华东师大版八年级数学教案例文

学俊21252分享

2021华东师大版八年级数学教案例文

教师备课的过程首先是一个将学生、教材和教师自己进行多维整合的过程,是一个教师知识准备、心理准备(如策略与方法等)和情感准备的过程。今天小编在这里整理了一些2021华东师大版八年级数学教案例文,我们一起来看看吧!

2021华东师大版八年级数学教案例文1

教学目标

1.知识与技能

能确定多项式各项的公因式,会用提公因式法把多项式分解因式.

2.过程与方法

使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.

3.情感、态度与价值观

培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.

重、难点与关键

1.重点:掌握用提公因式法把多项式分解因式.

2.难点:正确地确定多项式的公因式.

3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.公因式的系数取各项系数的公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.

教学方法

采用“启发式”教学方法.

教学过程

一、回顾交流,导入新知

【复习交流】

下列从左到右的变形是否是因式分解,为什么?

(1)2x2+4=2(x2+2);(2)2t2-3t+1=(2t3-3t2+t);

(3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;

(5)x2-2xy+y2=(x-y)2.

问题:

1.多项式mn+mb中各项含有相同因式吗?

2.多项式4x2-x和xy2-yz-y呢?

请将上述多项式分别写成两个因式的乘积的形式,并说明理由.

【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.

概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.

二、小组合作,探究方法

【教师提问】多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?

【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.

三、范例学习,应用所学

【例1】把-4x2yz-12xy2z+4xyz分解因式.

解:-4x2yz-12xy2z+4xyz

=-(4x2yz+12xy2z-4xyz)

=-4xyz(x+3y-1)

【例2】分解因式,3a2(x-y)3-4b2(y-x)2

【思路点拨】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法.

解法1:3a2(x-y)3-4b2(y-x)2

=-3a2(y-x)3-4b2(y-x)2

=-[(y-x)2•3a2(y-x)+4b2(y-x)2]

=-(y-x)2[3a2(y-x)+4b2]

=-(y-x)2(3a2y-3a2x+4b2)

解法2:3a2(x-y)3-4b2(y-x)2

=(x-y)2•3a2(x-y)-4b2(x-y)2

=(x-y)2[3a2(x-y)-4b2]

=(x-y)2(3a2x-3a2y-4b2)

【例3】用简便的方法计算:0.84×12+12×0.6-0.44×12.

【教师活动】引导学生观察并分析怎样计算更为简便.

解:0.84×12+12×0.6-0.44×12

=12×(0.84+0.6-0.44)

=12×1=12.

【教师活动】在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?

四、随堂练习,巩固深化

课本P167练习第1、2、3题.

【探研时空】

利用提公因式法计算:

0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

五、课堂总结,发展潜能

1.利用提公因式法因式分解,关键是找准公因式.在找公因式时应注意:(1)系数要找公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.

2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.

六、布置作业,专题突破

课本P170习题15.4第1、4(1)、6题.

板书设计

2021华东师大版八年级数学教案例文2

教学目标

1.知识与技能

会应用平方差公式进行因式分解,发展学生推理能力.

2.过程与方法

经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.

3.情感、态度与价值观

培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.

重、难点与关键

1.重点:利用平方差公式分解因式.

2.难点:领会因式分解的解题步骤和分解因式的彻底性.

3.关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.

教学方法

采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.

教学过程

一、观察探讨,体验新知

【问题牵引】

请同学们计算下列各式.

(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).

【学生活动】动笔计算出上面的两道题,并踊跃上台板演.

(1)(a+5)(a-5)=a2-52=a2-25;

(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.

【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.

1.分解因式:a2-25;2.分解因式16m2-9n.

【学生活动】从逆向思维入手,很快得到下面答案:

(1)a2-25=a2-52=(a+5)(a-5).

(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).

【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.

平方差公式:a2-b2=(a+b)(a-b).

评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).

二、范例学习,应用所学

【例1】把下列各式分解因式:(投影显示或板书)

(1)x2-9y2;(2)16x4-y4;

(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;

(5)m2(16x-y)+n2(y-16x).

【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.

【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.

【学生活动】分四人小组,合作探究.

解:(1)x2-9y2=(x+3y)(x-3y);

(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);

(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);

(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)]=5y(2x-y);

(5)m2(16x-y)+n2(y-16x)

=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).

2021华东师大版八年级数学教案例文3

教学目标

1.知识与技能

领会运用完全平方公式进行因式分解的方法,发展推理能力.

2.过程与方法

经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.

3.情感、态度与价值观

培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.

重、难点与关键

1.重点:理解完全平方公式因式分解,并学会应用.

2.难点:灵活地应用公式法进行因式分解.

3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的.

教学方法

采用“自主探究”教学方法,在教师适当指导下完成本节课内容.

教学过程

一、回顾交流,导入新知

【问题牵引】

1.分解因式:

(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;

(3)x2-0.01y2.

【知识迁移】

2.计算下列各式:

(1)(m-4n)2;(2)(m+4n)2;

(3)(a+b)2;(4)(a-b)2.

【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律.

3.分解因式:

(1)m2-8mn+16n2(2)m2+8mn+16n2;

(3)a2+2ab+b2;(4)a2-2ab+b2.

【学生活动】从逆向思维的角度入手,很快得到下面答案:

解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;

(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.

【归纳公式】完全平方公式a2±2ab+b2=(a±b)2.

二、范例学习,应用所学

【例1】把下列各式分解因式:

(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;

(3)(x+y)2-14(x+y)+49;(4)+n4.

【例2】如果x2+axy+16y2是完全平方,求a的值.

【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.

三、随堂练习,巩固深化

课本P170练习第1、2题.

【探研时空】

1.已知x+y=7,xy=10,求下列各式的值.

(1)x2+y2;(2)(x-y)2

2.已知x+=-3,求x4+的值.

四、课堂总结,发展潜能

由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:

a2-b2=(a+b)(a-b);

a2±ab+b2=(a±b)2.

在运用公式因式分解时,要注意:

(1)每个公式的形式与特点,通过对多项式的项数、次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,然后再运用公式分解.

2021华东师大版八年级数学教案例文4

一、 内容和内容解析

1.内容

三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.

2.内容解析

本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情.

理解三角形高、角平分线及中线概念到用几何语言精确表述,这是学生在几何学习上的一个深入.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着十分重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.

本节的重点是了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.

二、目标和目标解析

1.教学目标

(1)理解三角形的高、中线与角平分线等概念;

(2)会用工具画三角形的高、中线与角平分线;

2.教学目标解析

(1)经历画图实践过程,理解三角形的高、中线与角平分线等概念.

(2)能够熟练用几何语言表达三角形的高、中线与角平分线的性质.

(3)掌握三角形的高、中线与角平分线的画法.

(4)了解三角形的三条高、三条中线与三条角平分线分别相交于一点.

三、教学问题诊断分析

三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.

三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.

三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个 端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联系又有本质的区别.

2021华东师大版八年级数学教案例文5

一、内容和内容解析

1.内容

三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.

2.内容解析

本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情.

理解三角形高、角平分线及中线概念到用几何语言精确表述,这是学生在几何学习上的一个深入.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着十分重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.

本节的重点是了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.

二、目标和目标解析

1.教学目标

(1)理解三角形的高、中线与角平分线等概念.

(2)会用工具画三角形的高、中线与角平分线.

2. 教学目标解析

(1)经历画图实践过程,理解三角形的高、中线与角平分线等概念.

(2)能够熟练用几何语言表达三角形的高、中线与角平分线的性质.

(3)掌握三角形的高、中线与角平分线的画法.

(4)了解三角形的三条高、三条中线与三条角平分线分别相交于一点.

三、教学问题诊断分析

三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.

三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.

三角形的角平分线的理解: 三角形的角平分线也是一条线段,角的顶点是一个 端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联系又有本质的区别.

四、教学过程设计

1.抛砖引玉,提出问题

先演示画三角形的一条高,再给出问题:

(1)任画一个三角形,你能画出它的三条高吗?

(2)同一个三角形的三条高线有什么位置关系?

(3)不同类型的三角形的三条高线的交点位置有什么差别?

师生活动:先让学生画图实践,教师下位随机点拔,再让会画和不会画的学生相互交流提点,然后带着问题讨论,最后各小组派代表发言,师生共同归纳概念和画法.

【设计意图】这一环节是一个重要的实践活动,需要学生动手实践,动-流,动脑思考,加深理解高线的概念和掌握画高线的作图能力.

2.从实践上升到理论,形成概念

师生活动:

定义:从三角形的一个顶点出发,向对边引垂线,这个顶点和垂足之间的连线段叫做三角形的高线,简称三角形的高.

三角形的高有三条,特别强调:钝角三角形的高有两条在三角形外部,一条在三角形内部.直角三角形的两直角边就是高线.任何三角形的三条高所在直线交于一点,这点叫三角形的垂心.

归纳:锐角三角形有 条高,它们相交于一点,交点在三角形 ;

直角三角形有 条高 ,它们相交于一点,交点在三角形 ;

钝角三 角形有 条高,它们所在直线相交于一点,交点在三角形 .

注意:三角形的高是线段.

(几何语言) ∵AD是ΔABC上的高,

∴AD⊥BC (∠ADB=∠ADC=90).

逆向:∵AD⊥BC垂足是D,

∴AD是ΔABC的边 BC 上的高.

几何语言表达可在学完三个定义之后统一学习.便于学生比较记忆形成知识结构.

【设计意图】让学生体会由实践到理论的过程,培养学生的归纳总结能力.

补充说明:要养成习惯,画好高线后,随手标明垂直的记号和垂足的字母.

师生活动:结合具体图形,教师引导学生养成良好的作图习惯.

【设计意图】进一步加深学生对几何符号和几何语言的熟悉.

3.类比学习,掌握几何探究的基本方法

用相同的探究方法引导学生学习三角形的中线和角平分线.

师生活动:与高线的探究类似.


华东师大版八年级数学教案例文相关文章:

最新初中八年级数学上册教案例文

最新初中八年级数学教案文案

最新初中八年级数学教案文案

华师大八上数学教学工作总结范文

初中数学教案教学设计范文

初中8年级上册数学教案最新模板

初中数学教学设计教案模板范文

初中数学人教版教案范文五篇

八年级数学下优秀教学设计

2021最新八年级数学复习教案

    41823