小学五年级数学优质教案
作为一名优秀的教育工作者,常常要写一份优秀的教学设计,教学设计是一个系统化规划教学系统的过程。那么大家知道规范的教学设计是怎么写的吗?下面是小编为大家收集的小学五年级数学优质教案,希望对大家有所帮助。
小学五年级数学优质教案1
教材类型:
苏教版所属学科:数学
教学目标:
1.使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
2.使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。
3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
4.增长学生的自然知识,产生热爱自然,享受自然的情感。
教学重点:
初步认识正数和负数以及读法和写法。
教学难点:
理解0既不是正数,也不是负数。
教学具准备:
温度计、练习纸、卡片等。
教学过程:
(一)游戏导入,感受生活中的相反现象。(放在课前)
1.游戏:我们来玩个游戏轻松一下,游戏叫做《我反我反我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。
下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。
②知识竞赛中,五(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。(亏了500元)。
④零上10摄式度(零下10摄式度)。
2.谈话:李老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
(二)教学例1
1.认识温度计,理解用正负数来表示零上和零下的温度。
⑴(课件出示地图:点击南京出示温度计和南京的图片)首先来看一下南京的气温。这里有个温度计。
那我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄式度呢?5小格呢?10小格呢?
问:好,现在你能看出南京是多少摄式度吗?
学生交流:是0℃。
师:你是怎么知道的?(那里有个0,表示0摄式度)。
没错。(结合图说)这是零刻度线,表示0℃。(教师板书0)。
谁来温度计上表示出0℃。
⑵我们再来看上海的气温。(课件:点击上海出现温度计和上海的图片)
上海的最低气温是多少摄式度呢?(学生回答4摄式度后,教师板书4)在温度计上拨一拨。问:拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄式度。(教师结合图,突出上海的气温在零刻度线以上)。
⑶接着让我们一起来了解首都北京的最低气温。(课件点击北京的图片和温度计)
北京又是多少摄式度呢?
与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)
你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄式度)
你能在温度计上拨出来吗?
⑷现在我们已经知道了这三个地方的最低气温。仔细观察上海和北京的最低气温,它们一样吗?(不一样,一个在0℃以上,一个在0℃以下)。
对,上海的气温比0℃高,是零上4摄式度,我们可以记作+4℃,读作正四摄式度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
北京的气温比0℃低,是零下4摄式度。我们可以用-4℃来表示零下4摄式度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
⑸小结:通过刚才对三个城市的温度的了解,我们知道,记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。
2.试一试:学生看温度计,写出各地的温度。并读一读。(写在卡片上)
师:我们再来了解一下其他几个城市的最低气温,注意观察温度计,把这些温度记录在卡片上,并读一读。准备好了吗?
香港:(19℃或+19℃)。写好了请举起你们的卡片。提问:你是怎么想到用+19℃来表示的?这位同学是用19℃来表示的?行吗?为什么?(对,正号可以省略不写)。
哈尔滨:(-10℃)。老师写了10℃后举起来:“和老师的记录一样的请举牌。为什么没人和我的一样啊?(对,零下10摄式度,我们用-10℃来表示,10摄式度是表示零上10摄式度的)。
西宁:你们记录好了,同桌互相校对一下再来交流。问:为什么这样用这个数来表示?
⒊我们再来听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。
播放中央台播音员播报的天气预报(天津 呼和浩特乌鲁木齐银川)
指名一位学生上前交流。师:你们觉得他记录怎样?这位同学的前面的正号没写,可以吗?老师把-1的负号去掉,你们同意吗?
谁能在温度计上拨出11℃?谁来拨-1℃?
小结:通过刚才的学习,我们得出:以零摄式度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
(三)自主学习珠峰、吐鲁番盆地的海拔表达方法,进一步认识正数和负数。
小学五年级数学优质教案2
【教学目标】1、使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。
2、知道100以内的质数,熟悉20以内的质数。
3、培养学生自主探索、独立思考、合作交流的能力。
4、让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。
【重点难点】
质数、合数的意义。
教学过程:
【复习导入】
1、什么叫因数?
2、自然数分几类? (奇数和偶数)
教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。
【新课讲授】
1、学习质数、合数的概念。
(1)写出1 ~20各数的因数。(学生动手完成)
点四位学生上黑板写,教师注意指导。
(2)根据写出的因数的个数进行分类。
(3)教学质数和合数概念。
针对表格提问:什么数只有两个因数,这两个因数一定是什么数?
教师:只有1和它本身两个因数,这样的数叫做质数(或素数)。
如果一个数,除了1和它本身还有别的因数,这样的数叫做合数。(板书)
2、教学质数和合数的判断。
判断下列各数中哪些是质数,哪些是合数。
17 22 29 35 37 87 93 96
教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)
质数:17 29 37
合数:22 35 87 93 96
3、出示课本第14页例题1。
找出100以内的质数,做一个质数表。
(1)提问:如何很快地制作一张100以内的质数表?
(2)汇报:
①根据质数的概念逐个判断。
②用筛选法排除。
③注意1既不是质数,也不是合数。
小学五年级数学优质教案3
课型:
新授
教学内容:
教材P7及练习二第3、5、6、7、10题。
教学目标:
知识与技能:
使学生进一步掌握小数乘法的计算法则,并能正确地运用这一知识进行计算。
过程与方法:
理解倍数可以是整数,也可以是小数,学会解答有关倍数是小数的实际问题。
情感、态度与价值观:
养成认真计算与及时检验的学习习惯。
教学重点:
运用小数乘法的计算法则正确计算小数乘法。
教学难点:
正确点出积的小数点;初步理解和掌握:当乘数比1小时,积都比被乘数小;当乘数比1大时,积都比被乘数大。
教学方法:
观察、分析、比较。
教学准备:
多媒体。
教学过程:
一、复习准备
1、口算。0.9×6 7×0.08 1.87×O
0.24×2 1.4×0.3 0.12×6 1.6×5 4×0.25 60×0.5
指名学生口算,然后集体订正。
2、思考并回答。(1)做小数乘法时,怎样确定积的小数位数?
(2)如果积的小数位数不够,你知道该怎么办吗?如:0.02×0.4。
3、揭示课题:这节课我们继续学习小数乘法。(板书课题)
二、情景引入
1、教学例5。师:同学们,你们见过鸵鸟吗?知道鸵鸟是一种跑得比较快的动物吗?有一只鸵鸟正在帮助2个小朋友解难呢!我们一起去看看吧!鸵鸟正驮着小朋友向前奔跑,后面一只凶猛的非洲野狗紧紧追上来了!小朋友说:“哎呀,它追上来了!”鸵鸟说:“别担心,它追不上我!”
学生观察情境图,提取信息:
所求问题:(鸵鸟的最高速度是多少千米/小时)
所需条件:(非洲野狗的最高速度是56千米/小时,鸵鸟的最高速度是非洲野狗的1.3倍)
思路分析:
(1)引导学生理解小数倍数的含义:谁来说一说“鸵鸟的最高速度是非洲野狗的1.3倍”是什么意思?(鸵鸟的最高速度是非洲野狗的1.3倍,表示鸵鸟的速度除了有一个非洲野狗那么快,还要快。)
(2)追问提高学习新知的兴趣:
①非洲野狗能追上他们吗?(非洲野狗追不上鸵鸟。)
②“鸵鸟的最高速度是多少?”该怎样列式计算呢?(生回答:56×1.3)
③为什么这样列式?(求56的1.3倍是多少,所以用乘法。)
(3)通过学生的回答引导学生小结:倍数关系也可以是比1大的小数。
让学生独立计算出鸵鸟的最高速度,并集体订正。
(4)指导学生用估算进行验算:请同学们看这个算式及结果,你认为对吗?你是怎么验证的?(板书验算,完善课题)
学生可能会有以下几种验算的方法:
①用原式再计算一遍。
②把这个算式的因数交换一下位置,再算一遍。就可知道对与否。
③观察法:观察小数位数或第二个因数比1大还是比1小。
④用计算器进行验算。
师小结:不管用哪一种方法来检验都可以,根据自己的情况,喜欢用那一种就用那一种来验算。
(5)师:请同学们打开书,看一看书上的小朋友算得对吗?为什么?
生:因为两个因数中,56是整数,因数1.3中只有1个小数,所以积中小数点的位置点错了,应该点在2与8之间,即积应为72.8。
师:很好!在计算小数乘法时,每个小朋友都要养成认真做题、仔细检查的好习惯。
师:通过刚才同学们的计算、验算得出鸵鸟的最高速度是72.8千米/小时,比起非洲野狗的速度怎么样?非洲野狗能追上鸵鸟吗?说明刚才我们的想法怎样?(学生小组讨论交流,由代表发言,教师点评。)
2、看乘数,比较积和被乘数的大小。刚才有同学提到56×1.3式子中第二个因数比l大,所以积就比被乘数大,现在我们来研究一下这个问题。
三、巩固练习
1、完成教材第7页“做一做”。先让学生观察两道算式中的因数和积,进行判断,说出理由;再让学生独立计算,并用自己喜欢的验算方法进行验算。最后集体订正。
2、练习二第3题。先让学生独立判断。集体订正时,让学生说明道理,明白每一小题错在什么地方。
四、课堂小结。当乘数比1小时,积比被乘数小;当乘数比1大时,积比被乘数大。我们可以根据它们的这种关系初步判断小数乘法的正误。
作业:5、6、7
课外作业:教材第9页练习二第10题。
板书设计:
求一个数的小数倍数是多少及验算
小学五年级数学优质教案4
单元教学目标
1、使学生理解小数乘、除法计算法则,能够比较熟练地进行小数乘、除法笔算和简单的口算。
2、使学生会用“四舍五人法”截取积、商是小数的近似值。
3、使学生理解整数乘、除法运算定律对于小数同样适用,并会运用这些定律进行一些小数的简便计算。
教学内容
小数乘以整数 课型 新授课
教学目标
1、使学生理解小数乘以整数的计算方法及算理。
2、培养学生的迁移类推能力。
3、引导学生探索知识间的练习,渗透转化思想。
教学重点
小数乘以整数的算理及计算方法。
教学难点
确定小数乘以整数的积的小数点位置的方法。
教具准备
放大的复习题表格一张(投影)。
教学过程
一、引入尝试:
孩子们喜欢放风筝吗?今天我就带领大家一块去买风筝。
1、小数乘以整数的意义及算理。出示例1的图片,引导学生理解题意,得出:
⑴例1:风筝每个3.5元,买3个风筝多少元?(让学生独立试着算一算)
(2)汇报结果:谁来汇报你的结果?你是怎样想的?(板书学生的汇报。)
用加法计算:3.5+3.5+3.5=10.5元 3.5元=3元5角
3元×3=9元 5角×3=15角 9元+15角=10.5元
用乘法计算:3.5×3=10.5元 理解3种方法,重点研究第三种算法及算理。
⑶理解意义。为什么用3.5×3计算? 3.5×3表示什么?
(3个3.5或3.5的3倍。)
(4)初步理解算理。怎样算的? 把3.5元看作35角
3.5元 扩大10倍 3 5角
× 3 × 3
1 0. 5 元 1 0 5角
缩小到它的1/10
105角就等于10.5元
(5)买5个要多少元呢?会用这种方法算吗?
2、小数乘以整数的计算方法。
象这样的3.5元的几倍同学们会算了,那不代表钱数的 0.72×5你们会算吗?(生试算,指名板演。)
⑴生算完后,小组讨论计算过程。
板书: 0.7 2
× 5
3、 6 0
(2)强调依照整数乘法用竖式计算。
(3) 示范:0. 7 2 扩大100倍 7 2
× 5 × 5
3、 6 0 3 6 0
缩小到它的1/100
(4) 回顾对于0.72×5,刚才是怎样进行计算的?
使学生得出:先把被乘数0.72扩大100倍变成72,被乘数0.72扩大了100倍,积也随着扩大了100倍,要求原来的积,就把乘出来的积360再缩小100倍。(提示:小数末尾的0可以去掉)
(5)专项练习
①下面各数去掉小数点有什么变化?
0.34 3.5 0.201 5.02
②把353缩小10倍是多少?缩小100倍呢?1000倍呢?
③判断
1 3.5
× 2
2.7 0
(6)小结小数乘整数计算方法
计算 7 ×4 0.7×4 25×7 2.5×7
观察这2组题,想想与整数乘整数有什么不同?怎样计算小数乘以整数?
① 先把小数扩大成整数;
② 按整数乘法的法则算出积;
③ 再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。
小学五年级数学优质教案5
教学目标:
1、初步理解“平均数”的含义,探讨“求平均数”问题的分析方法。
2、能正确列式解答“求平均数”问题。
教学重点难点:
初步理解“平均数”的含义。探讨“求平均数”问题的分析方法。
教学过程:
一、引入
1、师:三个数学小伙伴都想和老师比赛投篮,1分钟内看谁投中的个数多。小胖1分钟投中了5个,他认为这不能完全代表他的水平,于是要求再给他两次机会,让他能充分发挥出水平。第二次,他投中了5个,第三次,还是5个。看来他的水平很稳定,用5来代表他1分钟投篮的水平合适吗?
二、新授
1、师:小淘气1分钟投了3个,他也要求再给两次机会。第二次投中5个,第三次投中4个。
刚刚小胖三次都投中5个,那显然就用5来代表小胖的水平。现在用几来代表小淘气1分钟的水平呢,说说理由。
生:用4来表示……; 用5来表示……。
师:用超常发挥的补救发挥失常的,这时候,用4来代表他的水平比较合适。这个方法叫做移多补少。(板书)还有其它想法吗?
生:因为4在3和5的中间;把超常发挥和发挥失常的去掉,他们不具备代表性;因为4是3、4、5的平均数……
师:不管超常发挥还是发挥失常,都是他自己投的,就先求和再均分,(板书)能使每一次的个数一样多。移多补少的目的也是将每一次的个数变成一样多(板书)。用一样多的这个数来代表他的水平合适吗?
遇到这样数据多多少少的,就可以通过先求和再均分,找到能代表他水平的数。
2、师:小丁丁直接要求有3次机会,不看不知道,一看吓一跳。
第一次投了3个,第二次投了7个,第三次2个,看来水平很不稳定,一起用手势高低来表示他的三次投篮结果。
师:你觉得用几来代表他1分钟的水平呢?
生:计算,是4。
师:4是从哪里来的?前面的小淘气是3个、4个、5个,好歹还有个4出现,这里一个4都没有,怎么会用4来代表呢?和同桌说说道理。
生:3+7+2=12个 12÷3=4个(板书算式)
生:还可以用移多补少的方法,把7拿出1给3,再拿出2给2。(媒体)
师:现在用4来代表小丁丁的水平合适吗?不管是求和均分还是移多补少,这两个方法的目的都是使得数据变得同样多,像这样通过求和均分或者移多补少,使得数据变得同样多,就是在求原来这些数据的平均数。(板书)
我们说,4是3、7、2这3个三个数的平均数。
那么小淘气的投篮水平也是4,这个4又是哪些数的平均数呢?
生:他投了3次,所以4是3、4、5的平均数。
师:这个4能代表小丁丁第一次的投篮水平吗?能代表他第二次的投篮水平吗?能代表他第三次的投篮水平吗?我们辛苦了那么久,结果这个4既不能代表第一次的水平,又不能代表第二次的水平,也不能代表第三次的水平,那它到底代表的什么呢?
师:平均数不代表某一次的水平,而是代表这一组数据的平均水平、整体水平。(板书)
3、师:终于轮到老师投篮了,老师想要4次投篮机会,小朋友会同意吗?为什么?
师:小丁丁笑了,老师,我们比的是平均水平,又不是比总数,你投好了,还要除以4,投得差了,仍然要除以4,更差了。我们就同意你投4次。
老师第一次1分钟投进了4个,第二次6个,第三次5个。到这里老师心里十分后悔,如果只投三次就好了。老师想就此收手,你们猜3个小朋友会同意吗?为什么?老师如果投第四次,可能赢吗?也可能输。
老师第四次投中了1个。我赢了还是输了?算一算。
如果我第四次投中了5个,我的水平是多少?如果第四次投中了9个呢?
三、练习
1、姚明比平均身高高,既然有人比平均身高高一点,就有人的身高……
不然移多补少补给谁去呢?
2、平均身高160,但不是人人都160,排在中间的人一定是160吗?
3、平均水深才110,所以以他140的身高肯定淹不死,是吗?
生:这是平均水深,是移多补少的结果,是求和均分的结果,也许有的地方比140深得多。
出示水下图片。
师:掌握了平均数以后,回到生活中再来看在这些数据还会上当吗?
4、有一则调查新闻,说先在的男性平均寿命是71岁。30年过去了,男性平均寿命从68上升到了71,该高兴还是难过?可是一个老爷爷看到新闻都难过得哭出来了,他今天刚过了70岁生日,你觉得他为什么会难过?他有必要去难过吗?说明他不懂平均数。你懂不懂平均数?你能用今天学的本领来劝劝他,让他喜笑颜开吗?
5、想不想猜一猜女性的平均寿命比男性长还是短?出示。《2010年世界卫生报告》显示:目前,中国男性的平均寿命大约是71岁,女性的平均寿命大约是74岁。
四、总结