七年级上册数学优秀教案
作为一名人民教师,常常要根据教学需要编写教案,教案是教学活动的总的组织纲领和行动方案。那么什么样的教案才是好的呢?以下是小编收集整理的七年级上册数学优秀教案,欢迎大家分享。
七年级上册数学优秀教案1
初一上册数学教案,欢迎各位老师和学生参考!
学习目标:1、理解有理数的绝对值和相反数的意义。
2、会求已知数的相反数和绝对值。
3、会用绝对值比较两个负数的大小。
4、经历将实际问题数学化的过程,感受数学与生活的联系。
学习重点:1.会用绝对值比较两个负数的大小。
2.会求已知数的相反数和绝对值。
学习难点:理解有理数的绝对值和相反数的意义。
学习过程:
一、创设情境
根据绝对值与相反数的意义填空:
1、
2、
-5的相反数是______,-10.5的相反数是______, 的相反数是______;
3、|0|=______,0的相反数是______。
二、探索感悟
1、议一议
(1)任意说出一个数,说出它的绝对值、它的相反数。
(2)一个数的绝对值与这个数本身或它的相反数有什么关系?
2、想一想
(1)2与3哪个大?这两个数的绝对值哪个大?
(2)-1与-4哪个大?这两个数的绝对值哪个大?
(3)任意写出两个负数,并说出这两个负数哪个大?他们的绝对值哪个大?
(4)两个有理数的大小与这两个数的绝对值的大小有什么关系?
三.例题精讲
例1. 求下列各数的绝对值:
+9,-16,-0.2,0.
求一个数的绝对值,首先要分清这个数是正数、负数还是0,然后才能正确地写出它的绝对值。
议一议:(1)两个数比较大小,绝对值大的那个数一定大吗?
(2)数轴上的点的大小是如何排列的?
例2比较-10.12与-5.2的大小。
例3.求6、-6、14 、-14 的绝对值。
小节与思考:
这节课你有何收获?
四.练习
1. 填空:
⑴ 的符号是 ,绝对值是 ;
⑵10.5的符号是 ,绝对值是
⑶符号是+号,绝对值是 的数是
⑷符号是-号,绝对值是9的数是 ;
⑸符号是-号,绝对值是0.37的数是 .
2. 正式足球比赛时所用足球的质量有严格的规定,下表是6个足球的质量检测结果(用正数记超过规定质量的克数,用负数记不足规定质量的克数).
请指出哪个足球质量最好,为什么?
第1个第2个第3个第4个第5个第6个
-25-10+20+30+15-40
3.比较下面有理数的大小
(1)-0.7与-1.7 (2) (3) (4)-5与0
五、布置作业:
P25 习题2.3 5
家庭作业:《评价手册》 《补充习题》
六、学后记/教后记
这篇初一上册数学教案就为大家分享到这里了。希望对大家有所帮助!
七年级上册数学优秀教案2
一、知识要点
本章的主要内容可以概括为有理数的概念与有理数的运算两部分。有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。有理数的运算是全章的重点。在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。
基础知识:
1、大于0的数叫做正数。
2、在正数前面加上负号“-”的数叫做负数。
3、0既不是正数也不是负数。
4、有理数(rationalnumber):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
5、数轴(numbera_is):通常,用一条直线上的点表示数,这条直线叫做数轴。
数轴满足以下要求:
(1)在直线上任取一个点表示数0,这个点叫做原点(origin);
(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;
(3)选取适当的长度为单位长度。
6、相反数(oppositenumber):绝对值相等,只有负号不同的两个数叫做互为相反数。
7、绝对值(absolutevalue)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。
由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。
8、有理数加法法则
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0.
(3)一个数同0相加,仍得这个数。
加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。表达式:a+b=b+a。
加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。
表达式:(a+b)+c=a+(b+c)
9、有理数减法法则
减去一个数,等于加这个数的相反数。表达式:a-b=a+(-b)
10、有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0.
乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。表达式:ab=ba
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。表达式:(ab)c=a(bc)
乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
表达式:a(b+c)=ab+ac
11、倒数
1除以一个数(零除外)的商,叫做这个数的倒数。如果两个数互为倒数,那么这两个数的积等于1。
12、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0.
13、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。an中,a叫做底数(basenumber),n叫做指数(e_ponent)。
根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。
14、有理数的混合运算顺序
(1)“先乘方,再乘除,最后加减”的顺序进行;
(2)同级运算,从左到右进行;
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
15、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即0
16、近似数(appro_imatenumber):
17、有理数可以写成m/n(m、n是整数,n≠0)的形式。另一方面,形如m/n(m、n是整数,n≠0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n≠0)表示。
拓展知识:
1、数集:把一些数放在一起,就组成一个数的集合,简称数集。
一、(1)所有有理数组成的数集叫做有理数集;
二、(2)所有的整数组成的数集叫做整数集。
2、任何有理数都可以用数轴上的一个点来表示,体现了数形结合的数学思想。
3、根据绝对值的几何意义知道:|a|≥0,即对任何有理数a,它的绝对值是非负数。
4、比较两个有理数大小的方法有:
(1)根据有理数在数轴上对应的点的位置直接比较;
(2)根据规定进行比较:两个正数;正数与零;负数与零;正数与负数;两个负数,体现了分类讨论的'数学思想;
(3)做差法:a-b>0a>b;
(4)做商法:a/b>1,b>0a>b.
二、基础训练
选择题
1、下列运算中正确的是().
A.a2a3=a6 B.=2 C.|(3-π)|=-π-3 D.32=-9
2、下列各判断句中错误的是()
A.数轴上原点的位置可以任意选定
B.数轴上与原点的距离等于个单位的点有两个
C.与原点距离等于-2的点应当用原点左边第2个单位的点来表示
D.数轴上无论怎样靠近的两个表示有理数的点之间,一定还存在着表示有理数的点。
3、、是有理数,若>且,下列说法正确的是()
A.一定是正数B.一定是负数C.一定是正数D.一定是负数
4、两数相加,如果比每个加数都小,那么这两个数是()
A.同为正数B.同为负数C.一个正数,一个负数D.0和一个负数
5、两个非零有理数的和为零,则它们的商是()
A.0B.-1C.+1D.不能确定
6、一个数和它的倒数相等,则这个数是()
A.1B.-1C.±1D.±1和0
7、如果|a|=-a,下列成立的是()
A.a>0B.a<0c.a>0或a=0D.a<0或a=0
8、(-2)11+(-2)10的值是()
A.-2B.(-2)21C.0D.-210
9、已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水()
A.3瓶B.4瓶C.5瓶D.6瓶
10、在下列说法中,正确的个数是()
⑴任何一个有理数都可以用数轴上的一个点来表示
⑵数轴上的每一个点都表示一个有理数
⑶任何有理数的绝对值都不可能是负数
⑷每个有理数都有相反数
A、1B、2C、3D、4
11、如果一个数的相反数比它本身大,那么这个数为()
A、正数B、负数
C、整数D、不等于零的有理数
12、下列说法正确的是()
A、几个有理数相乘,当因数有奇数个时,积为负;
B、几个有理数相乘,当正因数有奇数个时,积为负;
C、几个有理数相乘,当负因数有奇数个时,积为负;
D、几个有理数相乘,当积为负数时,负因数有奇数个;
填空题
1、在有理数-7,,-(-1.43),,0,,-1.7321中,是整数的有_____________是负分数的有_______________。
2、一般地,设a是一个正数,则数轴上表示数a的点在原点的____边,与原点的距离是____个单位长度;表示数-a的点在原点的____边,与原点的距离是____个单位长度。
3、如果一个数是6位整数,用科学记数法表示它时,10的指数是_____;用科学记数法表示一个n位整数,其中10的指数是___________.
4、实数a、b、c在数轴上的位置如图:化简|a-b|+|b-c|-|c-a|.
5、绝对值大于1而小于4的整数有_____________________________________,其和为___________.
6、若a、b互为相反数,c、d互为倒数,则(a+b)3-3(cd)4=________.
7、1-2+3-4+5-6+……+20__-2002的值是____________.
8、若(a-1)2+|b+2|=0,那么a+b=_____________________.
9、平方等于它本身的有理数是___________,立方等于它本身的有理数是_____________.
10、用四舍五入法把3.1415926精确到千分位是,用科学记数法表示302400,应记为,近似数3.0×精确到位。
11、正数–a的绝对值为__________;负数–b的绝对值为________
12、甲乙两数的和为-23.4,乙数为-8.1,甲比乙大
13、在数轴上表示两个数,的数总比的大。(用“左边”“右边”填空)
14、数轴上原点右边4.8厘米处的点表示的有理数是32,那么,数轴左边18厘米处的点表示的有理数是____________。
三、强化训练
1、计算:1+2+3+…+20__+2003=__________.
2、已知:若(a,b均为整数)则a+b=
3、观察下列等式,你会发现什么规律:,,,。。。请将你发现的规律用只含一个字母n(n为正整数)的等式表示出来
4、已知,则___________
5、已知是整数,是一个偶数,则a是(奇,偶)
6、已知1+2+3+…+31+32+33==17×33,求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值。
7、在数1,2,3,…,50前添“+”或“-”,并求它们的和,所得结果的最小非负数是多少?请列出算式解答。
8、如果有理数a,b满足∣ab-2∣+(1-b)2=0,试求+…+的值。
9、如果规定符号“_”的意义是a_b=ab/(a+b),求2_(-3)_4的值。
10、已知|_+1|=4,(y+2)2=4,求_+y的值。
11、投资股票是一种很重要的投资方式,但股市的风云变化又牵动了股民的心。
例:某股民在上星期五买进某种股票500股,每股60元,下表是本周每日该股票的涨跌情况(单位:元):
星期一二三四五
每股涨跌+4+4.5-1-2.5-6
第1章(1)星期三收盘时,每股是多少元?
第2章(2)本周内最高价是每股多少元?最低价是多少元?
第3章(3)已知买进股票是付了1.5‰的手续费,卖出时需付成交额1.5‰的手续费和1‰的交易费,如果在星期五收盘前将全部股票一次性地卖出,他的收益情况如何?
第4章(4)以买进的股价为0点,用折线统计图表示本周该股的股价情况。
四、竞赛训练:
1、最小的非负有理数与最大的非正有理数的和是
2、乘积=
3、比较大小:A=,B=,则A B
4、满足不等式104≤A≤105的整数A的个数是_×104+1,则_的值是( )
A、9 B、8 C、7 D、6
5、最小的一位数的质数与最小的两位数的质数的积是( )
A、11 B、22 C、26 D、33
6、比较
7、计算:
8、计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)._kb1.com
9、计算:
10、计算
11、计算1+3+5+7+…+1997+1999的值
12、计算1+5+52+53+…+599+5100的值.
13、有理数均不为0,且设试求代数式20__之值。
14、已知a、b、c为实数,且,求的值。
15、已知:。
16、解方程组。
17、若a、b、c为整数,且,求的值。
1.2.1有理数
七年级上(1.1正数和负数,1.2有理数)
1.2有理数
七年级上册数学优秀教案3
《1.2有理数》教学设计
【学习目标】:
1、掌握有理数的 概念,会对有理数按一定标准进行分类,培养分类能力;
2、了解分类的标准 与集合的含义;
3、体验分类是数学上常用的处理问题方法;
【学习重点】:正确理解有理数的概念
【学习难点】:正确理解分类的标准和按照一定标准分类
《1.2.1有理数》同步练习含答案
5.对-3.14,下面说法正确的是(B)
A.是负数,不是分数
B.是负数,也是分数
C.是分数,不是有理数
D.不是分数,是有理数
《1.2有理数》同步练习含答案解析
8.如果a与1互为相反数,则|a|=( )
A.2 B.﹣2 C.1 D.﹣1
【考点】绝对值;相反数.
【分析】根据互为相反数的定义,知a=﹣1,从而求解.
互为相反数的定义:只有符号不同的两个数叫互为相反数.
【解答】解:根据a与1互为相反数,得
a=﹣1.
所以|a|=1.
故选C.
【点评】此题主要是考查了相反数的概念和绝对值的性质.
9.若|1﹣a|=a﹣1,则a的取值范围是( )
A.a>1 B.a≥1 C.a<1 D.a≤1
【考点】绝对值.
【分析】根据|1﹣a|=a﹣1得到1﹣a≤0,从而求得答案.
【解答】解:∵|1﹣a|=a﹣1,
∴1﹣a≤0,
∴a≥1,
故选B.
【点评】本题考查了绝对值的求法,解题的关键是了解非正数的绝对值是它的相反数,难度不大.
七年级上册数学优秀教案4
【教学目标】
知识与技能
了解并掌握数据收集的基本方法。
过程与方法
在调查的过程中,要有认真的态度,积极参与。
情感、态度与价值观
体会统计调查在解决实际问题中的作用,逐步养成用数据说话的良好习惯。
【教学重难点】
重点:掌握统计调查的基本方法。
难点:能根据实际情况合理地选择调查方法。
【教学过程】
一、讲授新课
像前面提到的收集数据的活动中,全班同学是我们要考察的对象,我们采用问卷对全体同学作了逐一调查,像这样对全体对象进行的调查叫做全面调查。
调查、试验如采用普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受客观条件(人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常常采用抽样调查(samplingsurvey),即从被考察的全体对象中抽出一部分对象进行考察的调查方式。
在一个统计问题中,我们把所要考察对象的全体叫做总体(population),其中的每一个考察对象叫做个体(individual),从总体中所抽取的一部分个体叫做总体的一个样本(sample),样本中个体的数目叫做样本容量(samplesize)。
例如,在通过试验考察500只新工艺生产的灯泡的使用寿命时,从中抽取50只进行试验。这500只灯泡的使用寿命的全体是总体,其中每只灯泡的使用寿命是个体,抽取的50只灯泡的使用寿命是一个样本,50是这个样本的样本容量。
为了使抽取的50只灯泡能很好地反映500只灯泡的情况,抽取时要使每只灯泡逐一进行编号,再把编号写在小纸片上,将小纸片揉成团,放在一个不透明的容器内,充分搅拌后,从中一个个地抽取50个号签。
上面抽取样本的过程中,总体中的各个个体都有相等的机会被抽到,像这样的抽样方法是一种简单随机抽样(simplerandomsampling)。
师:以“你知道父母的生日吗?”为题在班级进行调查,请设计一张问卷调查表。
学生小组合作、讨论,学生代表展示结果。
教师指导、评论。
师:除了问卷调查外,我们还有哪些方法收集到数据呢?
学生小组讨论、交流,学生代表回答。
师:收集数据的直接方法有访问、调查、观察、测量、试验等,间接方法有查阅资料、上网查询等。就以下统计的数据,你认为选择何种方法去收集比较合适?
(1)你班中的同学是如何安排周末时间的?
(2)我国濒临灭绝的植物数量;
(3)某种玉米种子的发芽率;
(4)学校门口十字路口每天7:00~7:10时的车流量。
学生讨论,并举手回答。
师:采用何种方法一定要结合实际问题来定。在解决问题(1)的过程中,不但要同学们动手调查,并且对全班所有学生都要调查,像这样对全体对象进行的调查叫做全面调查(普查)。同学们还知道哪些数据的收集需要全面调查吗?
学生讨论,并回答。
生:如人口普查、本班同学的出生年月、某班学生50米跑成绩等。
师:很好!下列问题也适合采用普查方式来收集数据吗?
(1)了解某批次炮弹的杀伤半径;
(2)某一天全国牛肉的平均价格;
(3)一批罐头产品的质量检查;
(4)对某条河的河水的污染情况的调查。
学生讨论、分析,并举手回答。
师:普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受到客观条件(如人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常采用抽样调查,即从被考察的全体对象中抽出一部分对象进行考察的调查方式。
二、例题讲解
【例】(1)电视台准备在某市调查一电视节目的收视率,需要对所有看电视的人进行全面调查吗?对一所中学学生的调查结果能否作为该节目的收视率?
(2)对本年级同学是否喜欢某电视节目调查的结果,能代表学校全体同学的意见吗?如果不适用,应如何改进调查方法?
解:(1)电视台不可能对每个看电视的人进行全面调查。对这?所中学学生的调查结果不能作为该节目的收视率,因为调查对象只有中学生,缺乏代表性;
(2)对本年级同学是否喜欢某电视节目的调查结果不能代表
《6。2普查与抽样调查》课时练习
2。下列事件中最适合使用普查方式收集数据的是()
A。为制作校服,了解某班同学的身高情况
B。了解全市初三学生的视力情况
C。了解一种节能灯的使用寿命
D。了解我省农民的年人均收入情况
答案:A
解析:解答:A。人数不多,适合使用普查方式,所以A正确;
B。人数较多,结果的实际意义不大,因而不适用普查方式,所以B错误;
C。是具有破坏性的调查,因而不适用普查方式,所以C错误;
D。人数较多,结果的实际意义不大,因而不适用普查方式,所以D错误。
故选:A。
分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似。此题考查了抽样调查和全面调查,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查选用普查。
《6。2普查与抽样调查》基础巩固
1、(知识点1)要调查某校九年级550名学生周日的睡眠时间,下列调查对象选取最合适的是()
A、选取该校一个班级的学生
B、选取该校50名男生
C、选取该校50名女生
D、随机选取该校50名九年级学生
2、(题型二)下列调查适合用抽样调查的是()
A、了解义乌电视台“同年哥讲新闻”栏目的收视率
B、了解禽流感H7N9确诊病人同机乘客的健康状况
C、了解某班每个学生家庭电脑的数量
D、“神七”载人飞船发射前对重要零部件的检查
3、(题型三)为了了解某市八年级男生的身高,有关部门准备对200名八年级男生的身高做调查,以下调查方案中比较合理的是()
A、查阅外地200名八年级男生的身高统计资料
B、测量该市一所中学200名八年级男生的身高
C、测量该市两所农村中学各100名八年级男生的身高
D、在该市市区任选两所中学,农村任选两所中学,每所中学用抽签的方法分别选出50名八年级男生,然后测量他们的身高
七年级上册数学优秀教案5
教学目标:
知识能力:理解有理数的概念,掌握有理数的两种分类方法,能够按要求对给定的有理数进行分类。
过程与方法:通过本节的学习,培养学生正确的分类讨论观点和分类能力。
情感、态度、价值观:通过本节课的学习,体验成功的喜悦,保持学好数学的信心。
教学重点:掌握有理数的两种分类方法
教学难点:给定的数字将被填入它所属的集合中
教学方法:问题导向法
学习方法:自主探究法
一、形势归纳
小学我们学了整数和分数,上节课我们学了正数和负数。谁能快速提出以下问题?
1.有以下数字:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33
(1)将以上数字填入以下两组:正整数集{}和负整数集{}。你填完了吗?
(2)将以上数字填入以下两个集合:整数集合{}和分数集合{}。你填完了吗?
称整数和分数为有理数。(指点题,板书)
二、自学指导
学生自学课本,根据课本寻找自学的机会
提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。
附:自学提纲:
1.___________、____、_______统称为整数,
2._______和_________统称为分数
3.____ ______统称为有理数,
4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整数: 、分数:;正整数:、负整数: 、正分数: 、负分数:.
三、展示归纳
1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;
2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;
3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。
四、变式练习
逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。
1.整数可分为:_____、______和_______,分数可分为:_______和_________.有理数按符号不同可分为正有理数,_______和________.
2.判断下列说法是否正确,并说明理由。
(1)有理数包括有整数和分数.
(2)0.3不是有理数.
(3)0不是有理数.
(4)一个有理数不是正数就是负数.
(5)一个有理数不是整数就是分数
3.所有的正整数组成正整数集合,所有负整数组成负整数集合,依次类推有正数集合、负数集合、整数集合、分数集合等,把下面的有理数填入它属于的集合中(大括号内,将各数用逗号分开):
杨桂花:1.2.1有理数教学设计
正数集合:{ …}负数集合:{ …}
正整数集合:{ …}负分数集合:{ …}
4.下列说法正确的是( )
A.0是最小的正整数
B.0是最小的有理数
C.0既不是整数也不是分数
D. 0既不是正数也不是负数
5、下列说法正确的有( )
(1)整数就是正整数和负整数(2)零是整数,但不是自然数(3)分数包括正分数和负分数(4)正数和负数统称为有理数(5)一个有理数,它不是整数就是分数
五、总结与反思:通过本节课的学习,你有什么收获?
六、作业:必做题:课本14页:1、9题
七年级上册数学优秀教案相关文章: