5068教学资源网 > 学习宝典 > 数学 > 数学教研 > 教学设计 > 数学七年级上册教学设计方案

数学七年级上册教学设计方案

王佩20分享

数学七年级上册教学设计方案5篇

作为一名专为他人授业解惑的人民教师,编写教案是必不可少的,教案是实施教学的主要依据,有着至关重要的作用。我们该怎么去写教案呢?以下是小编为大家整理的数学七年级上册教学设计方案,欢迎阅读,希望大家能够喜欢。

数学七年级上册教学设计方案1

《1.2有理数》教学设计

【学习目标】:

1、掌握有理数的 概念,会对有理数按一定标准进行分类,培养分类能力;

2、了解分类的标准 与集合的含义;

3、体验分类是数学上常用的处理问题方法;

【学习重点】:正确理解有理数的概念

【学习难点】:正确理解分类的标准和按照一定标准分类

《1.2.1有理数》同步练习含答案

5.对-3.14,下面说法正确的是(B)

A.是负数,不是分数

B.是负数,也是分数

C.是分数,不是有理数

D.不是分数,是有理数

《1.2有理数》同步练习含答案解析

8.如果a与1互为相反数,则|a|=( )

A.2 B.-2 C.1 D.-1

【考点】绝对值;相反数.

【分析】根据互为相反数的定义,知a=-1,从而求解.

互为相反数的定义:只有符号不同的两个数叫互为相反数.

【解答】解:根据a与1互为相反数,得

a=-1.

所以|a|=1.

故选C.

【点评】此题主要是考查了相反数的概念和绝对值的性质.

9.若|1-a|=a-1,则a的取值范围是( )

A.a>1 B.a≥1 C.a<1 D.a≤1

【考点】绝对值.

【分析】根据|1-a|=a-1得到1-a≤0,从而求得答案.

【解答】解:∵|1-a|=a-1,

∴1-a≤0,

∴a≥1,

故选B.

【点评】本题考查了绝对值的求法,解题的关键是了解非正数的绝对值是它的相反数,难度不大.

数学七年级上册教学设计方案2

《1.1正数和负数》教学设计

教学目标

1. 通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示相反意义的量(规定了向指定方向变化的量);

2. 进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力;

3. 激发学生学习数学的兴趣.

[教学重点与难点]

重点:深化对正负数概念的理解.

难点:正确理解和表示向指定方向变化的量

《1.1正数和负数》同步练习

1、下列说法正确的是( )

A、零 是正数不是负数 B、零既不是正数也不是负数

C、零既是正数也是负数 D、不是正数的数一定是负数,不是负数的数一定是正数

2、向东行进-30米表示的意义是( )

A、向东行进30米 B、向东行进-30米

C、向西行进30米 D、向西行进-30米

3、零上13℃记作 +13℃,零下2℃可记作( )

A、2 B、-2 C、2℃ D、-2℃

4、某市20 15年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高 气温比 最低气温高( )

A、-10℃ B、-6℃ C、6℃ D、10℃

5、 中,正数有 ,负数有 .

6、如 果水位升高5m时水位变化记作+5m,那么水位下降3m时水位变化记作 m,

水位不升不降时水位变化记作 m.

7、在同一个问题中,分别用正数与负数表示的量具有 的意义.

8、甲、乙两人同时从A地出发, 如果向南走48m,记作+48m,则乙向北走32m,记为 ,

这时甲乙 两人相距 m. .

9、某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃~ ℃范围内保存才合适.

10、20__年我国全年平均降水量比 上年减少24㎜,20__年比上年增长8㎜,20__年比上年减少20㎜。用正数和负数表示这三年我国全年平均降水量比上年的增长量.

11、如果把一个物体向右移动5m记作移动-5m,那么这个物体又移动+5m是什么 意思?这时物体离它两次移动前的位置多 远?

12、某老师把某一小组五名同学的成绩简记为:+10,-5,0,+8,-3,又知道记为0的成绩表 示90分,正数表示超过90分,则五名 同学的平均成绩为多少分?

13、某地一天中午12时的气温是7℃,过5小时气温下降了4℃ ,又过7小时气温又下降了4℃,第二天0时的气温是多少?

《1.1正数和负数》同步练习含答案

19.体育课上,对初三(1)班的学生进行了仰卧起坐的测试,以能做28个为标准,超过的次数用正数来表示,不足的次数用负数来表示,其中10名 女学生成绩如下:1、4、0、8、6、8、0、6、-5、-1.

(1)这10名女生的达标率为多少?

(2)没达标的同学做了几个仰卧起坐?

解:(1)这10名女生的达标率为8÷10 ×100%=80%.

(2)没达标的同学做仰卧起坐的个数分别是23个和27个.

数学七年级上册教学设计方案3

(1)常见的几何体;

(2)构成图形的基本元素——点、线、面及点、线与平面

图形的一些简单性质;点动成线,线动成面,面动成体

(3)棱柱的特征;并注意棱柱和圆柱的联系与区别

(4)长方体、正方体的表面沿某些棱展开的平面图形及圆

柱、圆锥的侧面展开图;

(5)用一个平面去截一个几何体,截面的形状;

(6)物体的三视图,立方体及其简单组合的三视图;

(7)生活中的平面图形.

一.填空:

1.这个几何体的名称是______;它有_____个面组成;它有____个顶点;经过每个顶点有____条边。

2.正方体或长方体是一个立体图形,它是由______个面,______条棱,_____个顶点组成的.

3.在①长方体、②球、③圆锥、④圆柱、⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是(填上序号即可)

4.一个棱柱有十个顶点,且所有侧棱的和为30cm,则每条侧棱长为cm.

5.将下面4个图用纸复制下来,然后沿所画线折起来,把折成的立体图形名称写在图的下边横线上:

6.如图是一些相同的正方块构成的立体图形的三视图,则构成这个立体图形的小方块数为.

7.如图所示,木工师傅把一个长为1.6米的长方体木料锯成3段后,表面积比原来增加了

80,那么这根木料本来的体积是

8.要把一个长方体的表面剪开展成平面图形,至少需要剪开________条棱.

9.如图,截去正方体一角变成一个多面体,这个多面体有____个面,____条棱.

10.若要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,x=____,y=____.

11.四棱柱按如图粗线剪开一些棱,展成平面图形,请画出平面图来:

12.薄薄的硬币在桌面上转动时,看上去象球,这说明了_____________.

13.右图中,三角形共有个。

14.如图是用边长为1的小正方体摆放成的一个几何体的三视图,这个几何体的表面积为。

第13题主视图俯视图左视图

二:选择题(每题4分,共24分).

15.桌上摆满了朋友们送来的礼物,小狗贝贝好奇地想看个究竟.

Pqmn

①小狗先是站在地面上看,②然后抬起了前腿看,③唉,还是站到凳子上看吧,④最后,

它终于爬上了桌子………按小狗四次看礼物的顺序,四个画面的顺序为()

A.mnpqB.qnmpC.pqmnD.mnqp

16.以下四个平面图形中,不是正方体的展开图的是()

ABCD

17.只有盖的盒子长、宽、高分别为5、5、3cm,如图所示,有一只蚂蚁从A点出

发,沿棱爬行,爬行的路径不许重复,则蚂蚁回到A点时,最多爬行()

A.24cmB.32cmC.34cmD.48cm

18.一个几何体是由若干个相同的正方体组成的,其主视图和左视图

如图所示,则这个几何体最多可由多少个这样的正方体组成()

A.12个B.13个C.14个D.18个

19.把一个正方体截去一个角,剩下的几何体最多有几个面()

A.5个面B.6个面C.7个面D.8个面

20.从多边形一条边上的一点(不是顶点)发出发,连接各个顶点得

到20__个三角形,则这个多边形的边数为().

A.20__B.20__C.20__D.20__

21.下列四个图形折叠后与所得的正方体的各个面上所标数字一致的是()

22.如图(1)是正方体表面积展开图,如果将其折回原来的

正方体图(2)时,与点P重合的两点应该是()

A.S和ZB.T和Y

C.U和YD.T和V

23.用一个平面去截①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是()

A.①②④ B.①②③ C.②③④ D.①③④

24.如图是正方体的表面展开图,折叠成正方体后,其中哪两个完全相同()

A.(1)(2)B.(2)(3)C.(3)(4)D.(2)(4)

25.从多边形一个顶点处出发,连接各个顶点得到20__个三角形,

则这个多边形的边数为()

A.20__B.20__C.20__D.20__

数学七年级上册教学设计方案4

教学目的:

1.了解计算器的性能,并会操作和使用;

2.会用计算器求数的平方根;

重点:用计算器进行数的加、减、乘、除、乘方和开方的计算;

难点:乘方和开方运算;

教学过程:

1.计算器的使用介绍(科学计算器)

2.用计算器进行加、减、乘、除、乘方、开方运算

例1用计算器求下列各式的值.

(1)(-3.75)+(-22.5) (2)51.7(-7.2)

解(1)

(-3.75)+(-22.5)=-26.25

(2)

51.7(-7.2)=-372.24

说明输入数据时,按键顺序与写这个数据的顺序完全相同,但输入负数时,符号转换键要放在数据之后键入.

随堂练习

用计算器求值

1.9.23+10.2 2.(-2.35)×(-0.46)

答案1.37.8 2.1.081

数学七年级上册教学设计方案5

教学目标

教学知识点:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题.

能力训练要求:1.学会观察图形,勇于探索图形间的关系,培养学生的空间观念.

2.在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.

情感与价值观要求:1.通过有趣的问题提高学习数学的兴趣.

2.在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学.

教学重点难点:

重点:探索、发现给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.

难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.

教学过程

1、创设问题情境,引入新课:

前几节课我们学习了勾股定理,你还记得它有什么作用吗?

例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子?

根据题意,(如图)AC是建筑物,则AC=12米,BC=5米,AB是梯子的长度.所以在Rt△ABC中,AB2=AC2+BC2=122+52=132;AB=13米.

所以至少需13米长的梯子.

2、讲授新课:①、蚂蚁怎么走最近

出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆行柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的的最短路程是多少?(π的值取3).

(1)同学们可自己做一个圆柱,尝试从A点到B点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(小组讨论)

(2)如图,将圆柱侧面剪开展开成一个长方形,从A点到B点的最短路线是什么?你画对了吗?

(3)蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?(学生分组讨论,公布结果)

我们知道,圆柱的侧面展开图是一长方形.好了,现在咱们就用剪刀沿母线AA′将圆柱的侧面展开(如下图).

我们不难发现,刚才几位同学的走法:

(1)A→A′→B;(2)A→B′→B;

(3)A→D→B;(4)A—→B.

哪条路线是最短呢?你画对了吗?

第(4)条路线最短.因为“两点之间的连线中线段最短”.

②、做一做:教材14页。李叔叔随身只带卷尺检测AD,BC是否与底边AB垂直,也就是要检测∠DAB=90°,∠CBA=90°.连结BD或AC,也就是要检测△DAB和△CBA是否为直角三角形.很显然,这是一个需用勾股定理的逆定理来解决的实际问题.

③、随堂练习

出示投影片

1.甲、乙两位探险者,到沙漠进行探险.某日早晨8∶00甲先出发,他以6千米/时的速度向东行走.1时后乙出发,他以5千米/时的速度向北行进.上午10∶00,甲、乙两人相距多远?

2.如图,有一个高1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分是0.5米,问这根铁棒应有多长?

1.分析:首先我们需要根据题意将实际问题转化成数学模型.

解:(如图)根据题意,可知A是甲、乙的出发点,10∶00时甲到达B点,则AB=2×6=12(千米);乙到达C点,则AC=1×5=5(千米).

在Rt△ABC中,BC2=AC2+AB2=52+122=169=132,所以BC=13千米.即甲、乙两人相距13千米.

2.分析:从题意可知,没有告诉铁棒是如何插入油桶中,因而铁棒的长是一个取值范围而不是固定的长度,所以铁棒最长时,是插入至底部的A点处,铁棒最短时是垂直于底面时.

解:设伸入油桶中的长度为x米,则应求最长时和最短时的值.

(1)x2=1.52+22,x2=6.25,x=2.5

所以最长是2.5+0.5=3(米).

(2)x=1.5,最短是1.5+0.5=2(米).

答:这根铁棒的长应在2~3米之间(包含2米、3米).

3.试一试(课本P15)

在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?

我们可以将这个实际问题转化成数学模型.

解:如图,设水深为x尺,则芦苇长为(x+1)尺,由勾股定理可求得

(x+1)2=x2+52,x2+2x+1=x2+25

解得x=12

则水池的深度为12尺,芦苇长13尺.

④、课时小结

这节课我们利用勾股定理和它的逆定理解决了生活中的几个实际问题.我们从中可以发现用数学知识解决这些实际问题,更为重要的是将它们转化成数学模型.

⑤、课后作业

课本P25、习题1.52

数学七年级上册教学设计方案相关文章:

2021最新人教版数学七年级上册教案

初一数学上册教案2021范文

最新七年级上册数学教案案例

七年级数学教学设计范文7篇

初一的数学上册教案最新例文

最新七年级数学上册人教版教案案例

七年级人教版数学教案5篇

最新初一上册教案数学范文

数学七年级上册教案最新文案

2021最新湘教版七年级上册数学教案

    432674