初二上册数学优秀教案

泳泳0分享

教案是针对社会需求、学科特点及教育对象具有明确目的性、适应性、实用性的教学研究成果的重要形式,教案应是与时俱进的。这里给大家分享一些关于初二上册数学优秀教案,方便大家学习。

初二上册数学优秀教案篇1

教学目标:

1、 经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2、 探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

重点难点:

重点:了解勾股定理的由来,并能用它来解决一些简单的问题。

难点:勾股定理的发现

教学过程

一、 创设问题的情境,激发学生的学习热情,导入课题

出示投影1 (章前的图文 p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

出示投影2 (书中的P2 图1—2)并回答:

1、 观察图1-2,正方形A中有_______个小方格,即A的面积为______个单位。

正方形B中有_______个小方格,即A的面积为______个单位。

正方形C中有_______个小方格,即A的面积为______个单位。

2、 你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:

3、 图1—2中,A,B,C 之间的面积之间有什么关系?

学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的A.B,C 的关系呢?

二、 做一做

出示投影3(书中P3图1—4)提问:

1、图1—3中,A,B,C 之间有什么关系?

2、图1—4中,A,B,C 之间有什么关系?

3、 从图1—1,1—2,1—3,1|—4中你发现什么?

学生讨论、交流形成共识后,教师总结:

以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

三、 议一议

1、 图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?

2、 你能发现直角三角形三边长度之间的关系吗?

在同学的交流基础上,老师板书:

直角三角形边的两直角边的平方和等于斜边的平方。这就是的“勾股定理”

也就是说:如果直角三角形的两直角边为a,b,斜边为c

那么

我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

3、 分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)

四、 想一想

这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢?

五、 巩固练习

1、 错例辨析:

△ABC的两边为3和4,求第三边

解:由于三角形的两边为3、4

所以它的第三边的c应满足 =25

即:c=5

辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题

△ ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。

(2)若告诉△ABC是直角三角形,第三边C也不一定是满足 ,题目中并为交待C 是斜边

综上所述这个题目条件不足,第三边无法求得。

2、 练习P7 §1.1 1

六、 作业

课本P7 §1.1 2、3、4

初二上册数学优秀教案篇2

教材分析

1、 本节课首先从最简单的正比例函数入手.从正比例函数的定义、函数关系式、引入次函数的概念。

2、 八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。

学情分析

1、虽然这是一节全新的数学概念课,学生没有接触过。但是,孩子们已经具备了函数的一些知识,如正比例函数的概念及性质,这些都为学习本节内容做好了铺垫。

2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习其它函数的基础。

3、学生认知障碍点:根据问题信息写出一次函数的表达式。

教学目标

1、 理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系。

2、 能根据问题信息写出一次函数的表达式。能利用一次函数解决简单的实际问题。

3、 经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力。

教学重点和难点

1、一次函数、正比例函数的概念及关系。

2、会根据已知信息写出一次函数的表达式。

初二上册数学优秀教案篇3

教学目标

1.掌握等边三角形的性质和判定方法. 2.培养分析问题、解决问题的能力.

教学重点:等边三角形的性质和判定方法.

教学难点:等边三角形性质的应用

教学过程

I创设情境,提出问题

回顾上节课讲过的等边三角形的有关知识

1.等边三角形是轴对称图形,它有三条对称轴.

2.等边三角形每一个角相等,都等于60°

3.三个角都相等的三角形是等边三角形.

4.有一个角是60°的等腰三角形是等边三角形.

其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.

II例题与练习

1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?

①在边AB、AC上分别截取AD=AE.

②作∠ADE=60°,D、E分别在边AB、AC上.

③过边AB上D点作DE∥BC,交边AC于E点.

2. 已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.

分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.

3. P56页练习1、2

III课堂小结:1.等腰三角形和性质;等腰三角形的条件

V布置作业: 1.P58页习题12.3第ll题.

2.已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个?

初二上册数学优秀教案篇4

教学过程

一、 复习等腰三角形的判定与性质

二、 新授:

1.等边三角形的性质:三边相等;三角都是60°;三边上的中线、高、角平分线相等

2.等边三角形的判定:

三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形;

在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半

注意:推论1是判定一个三角形为等边三角形的一个重要方法.推论2说明在等腰三角形中,只要有一个角是600,不论这个角是顶角还是底角,就可以判定这个三角形是等边三角形。推论3反映的是直角三角形中边与角之间的关系.

3.由学生解答课本148页的例子;

4.补充:已知如图所示, 在△ABC中, BD是AC边上的中线, DB⊥BC于B,

∠ABC=120o, 求证: AB=2BC

分析 由已知条件可得∠ABD=30o, 如能构造有一个锐角是30o的直角三角形, 斜边是AB,30o角所对的边是与BC相等的线段,问题就得到解决了.

初二上册数学优秀教案篇5

教学目标:

1. 经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯。

2. 掌握勾股定理和他的简单应用

重点难点:

重点: 能熟练运用拼图的方法证明勾股定理

难点:用面积证勾股定理

教学过程

七、 创设问题的情境,激发学生的学习热情,导入课题

我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需加以论证,下面就是今天所要研究的内容,下边请大家画四个全等的直角三角形,并把它剪下来,用这四个直角三角形,拼一拼、摆一摆,看看能否得到一个含有以斜边c为边长的正方形,并与同学交流。在同学操作的过程中,教师展示投影1(书中p7 图1—7)接着提问:大正方形的面积可表示为什么?

(同学们回答有这几种可能:(1) (2) )

在同学交流形成共识之后,教师把这两种表示大正方形面积的式子用等号连接起来。

= 请同学们对上面的式子进行化简,得到: 即 =

这就可以从理论上说明勾股定理存在。请同学们去用别的拼图方法说明勾股定理。

八、 讲例

1. 飞机在空中水平飞行,某一时刻刚好飞机飞到一个男孩头顶正上方4000多米处,过20秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?

分析:根据题意:可以先画出符合题意的图形。如右图,图中△ABC的 米,AB=5000米,欲求飞机每小时飞行多少千米,就要知道飞机在20秒的时间里的飞行路程,即图中的CB的长,由于直角△ABC的斜边AB=5000米,AC=4000米,这样的CB就可以通过勾股定理得出。这里一定要注意单位的换算。

解:由勾股定理得

即BC=3千米 飞机20秒飞行3千米,那么它1小时飞行的距离为:

答:飞机每个小时飞行540千米。

九、 议一议

展示投影2(书中的图1—9)

观察上图,应用数格子的方法判断图中的三角形的三边长是否满足

同学在议论交流形成共识之后,老师总结。

勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。

十、 作业

1、 1、课文 P11§1.2 1 、2

2、 选用作业。


初二上册数学优秀教案相关文章:

初二数学上教案最新例文

初中8年级上册数学教案最新模板

最新人教版八年级上册数学教案模板

八年级数学教案

七年级上册数学优秀教案5篇

2021初二数学教案大全范文

八年级上册数学教学计划五篇

2021八年级初中数学教案文案

初二数学试讲教案最新范文

最新2021人教版八年级数学第十三章实数教案

    458901