数学八年级教学反思
数学教育要以获取知识为首要目标转变为首先关注人的发展,创造一个有利于学生生动活泼,主动发展的教育环境,提供给学生充分发展的时间和空间。这里给大家分享一些关于数学八年级教学反思,方便大家学习。
数学八年级教学反思篇1
本学期已过了一段阶段了,作为初三毕业班的数学老师,我深感肩上的压力之大,责任之重。
目前,对于初三这个重要的学习阶段,如何进行有效的教学可以使学生的学习起到很大的作用。而目前在学生的学习中还出现以下学习的情况:
一、多数情况下,也比较擅长提出启发性的问题来激发学生的思考,但问题提出后没给学生留下足够的思维空间甚至不留思维空间,往往习惯于自问自答,急于说出结果。显然,学生对题目只是片面的理解,不能引发学生的深思,就不能给学生深刻的印象,因此造成很多学生对于做过的题一点印象也没有。
二、我在备课的时候对问题已备选了一个或几个解决方案,课堂上以“定势思维”组织教学,但教学中的不确定因素很多,当学生的思路与我的思路相左或学生的想法不切实际时,不愿打乱即定的教学计划,干脆采取回避、压制措施,使学生的求异思维、批判思维、创造性思维被束缚。
三、对问题的坡度设置的不够,坡度过大,导致思维卡壳,学生的思维活动不能深入进行而流于形式。
针对以上这些情况,下阶段准备采取的措施:
1、对过多的题,进行适当的筛选。
2、还给学生一片思维空间,让学生受到适当的"挫折"教育,以加深对问题的认识。
3、学生有不同想法单独与教师交谈,好的想法给予鼓励并加以推广;不对的想法,给予单独的指正。这样,学生即可以大胆放心的说出自己的想法,又可以把一些教学中漏洞补上。
4、精心设置问题的坡度,使学生步步深入,并探究出规律。课堂上注意课堂节奏,尽量让中下游的学生跟上老师的步伐,多给学生自己练习的时间,让学生真正成为学习的主体,做到不仅是老师完成任务,还要学生完成任务。
另外,折叠问题是近年来的热点问题,学生有些陌生感,引导学生在折叠时,应该注意折叠前后的线段、角的相等关系。作为发散学生思维的一个重要手段,应该注重多种方法的运用,培养学生的解题能力。
相信经过我的不懈努力,一定会不断取得进步。
数学八年级教学反思篇2
通过八年级数学一个多学期的教学,我深刻体会到在学生自主探索学习的过程中,当他们遇到自己无法解决的疑难问题时,我们教师在观察的过程中应该做适当的评价和提示,以弥补学生学习自主学习能力的不足之处,从而达到化难为易、提高学生数学水平的目的。在课堂教学过程中,诚信的交流(教师与学生之间,学生与学生之间)意味着教师对学生的殷切的期望和美好的激励。我们教师都喜望每一个学生都能学好数学,真诚的赞美学生数学做题或学习的成功,让学生在课堂中能在不断出现的新问题和不断被自己“聪明”的解决问题的成功愉悦中进行学习,让他们享受到学习的快乐。学生在学习中充分合作、交流,并积极的相互反馈、互相帮助,这样才能有利于充分发挥集体智慧,开展合作学习,从而获得好的教学效果。
在八年级数学教学过程中,如:分式、平行四边形等内容,我对于学生的提问,不直接告诉学生答案,而是对学生作出适当的启发和提示,让学生自己去动手动脑,思考问题,这样可以逐步培养学生自主学习的能力,有利于培养他们养成良好的自学习惯。如我们八(4)班的刘欣欣、赵良超等同学,一学期多下来,数学自学能力大大提高了,经常在预习新课时就已经把课后的练习完成了。在课堂上我们教师应该做到三“不”:学生能自己说出来的,教师不说;学生能自己学会的,教师不讲;学生能自己做到的,教师不教。尽可能地提供多种机会让学生自己去理解、去体验,从而提高学生的数学认知能力,激发学生的数学兴趣,加强学生数学能力的培养,提高他们解决问题的能力。
同时,八年级是一个特别的年级,容易产生两级分化,数学学科也是如此,这就更需要我们数学老师在课下也要与学生多交流,多沟通,了解他们的思想动态以及对数学学习的建议,在教学中要面向全体学生,使每一个学生都能学到数学知识,学会数学知识,每天都有新的收获,关心、呵护他们,让他们与您心连心!
总之,要想教好八年级数学、让学生学好八年级数学需要我们八年级数学教师付出自己的心血和汗水,付出自己的爱心,才能桃李满天下!
数学八年级教学反思篇3
听课是学生取知识,发展力的重要途经,是学习的中心环节,作为一名中学生,他的大部分时间都是在课堂上度过的。所以教家呼吁,向课堂40分钟要质量,就是个原因。如果我们忽视了听课这个环节,就是检了芝麻,丢了西瓜,得不偿失。
听课有个方法和策略的问题,不少同学听课方法不对头,意力不集中,经常分心走神;有的同学听课不得要领,掌握的知识支零破碎;有的同学极其被动,手慌脚乱,无所适从;有的同学听课流于形式,只听热闹不听门道;有的同学我行我素,自以为是,数学课上做外语,外语上做数学,凡此种种,都直接影响听课效果,导致成绩下降,下面谈一谈听数学课的方法,大家参考。
培养审题的好习惯——建立错题本
审题是解题的基础,完全明确问题的文字陈述和符号的含义,准确把握问题的条件和结论,必要时还要适当画出图表,列举、提炼出问题的关键,形成题目脉络。解题中的反思是指学习者对自身解题活动的深层次的反向思考,不仅仅是对数学解题学习的一般性回顾或重复,而是深究数学解题活动中所涉及的知识、方法、思路、策略等,从中达到解决一类问题。所谓:“数学问题的解决仅仅只是一半,更重要的是解题之后的回顾”。建议学生在复习过程中准备一本专门的解题反思本,把一些典型的例题尤其是典型的错误摘录下来,并对每一题批注在解题过程中,自己都用了哪些基础知识、基本方法以及数学思想方法,解该题时哪些步骤容易出错,是否还有其他的方法,该问题的难点何在,应该如何突破,问题能否推广,在解题时自己有哪些缺点为解题设置了障碍等。等到临近中考时再把这本子拿出来好好复习,会比看书本或其他资料更有针对性,复习效果自然也会更好。
数学八年级教学反思篇4
备课过程是一种艰苦的复杂的脑力劳动过程,知识的发展、教育对象的变化、教学效益要求的提高,使作为一种艺术创造和再创造的备课是没有止境的,一种最佳教学方案的设计和选择,往往是难以完全使人满意的。
一:教材课时安排过紧有关。初二教材的教学时间不够,教参函数第一节第二节两节课,第三节一次函数节,课时太少,本节要加一个复习课
二:教学内容不好处理。
在“2。一次函数的图象”中有平移的问题,
1、(1)将直线y=3x向下平移2个单位,得到直线_____________________;
(2)将直线y=—x—5向上平移5个单位,得到直线_____________________。
与多位教师讨论后,我们用学案(下面的表)来处理,让学生更多一点感性认识,少一点理论上的结论
2、“一次函数的性质”中无b对函数的图象的影响,但题中有,要补讲
环节二:概括一次函数图象的性质
一次函数y=kx+b有下列性质:
(1)当k>0时,y随x的增大而______,这时函数的图象从左到右_____;
(2)当k<0时,y随x的增大而______,这时函数的图象从左到右_____。
(3)当b>0时,这时函数的图象与y轴的交点在:
(4)当b>0时,这时函数的图象与y轴的交点在:待定系数法的引入上用“弹簧的长度y(厘米)”来讲的,太难,要先讲书上的“做一做:“已知一次函数y=kx+b的图象经过点(—1,1)和点(1,—5),”
三:难度不好处理:
如我们在讲一次函数的定义时(第一课时)补充了一个例题:已知函数y=当m取什么值时,y是x的一次函数?当m取什么值是,y是x的正比例函数。”
学生难以理解,我个人认为太难,超出了学生的理解能力。反而对一个具体的一次函数y=—2x+3中k,b是多少强调的不多。
数学八年级教学反思篇5
我们常有这样的困惑:不仅仅是讲了,而且是讲了多遍,但是学生的解题潜力就是得不到提高!也常听见学生这样的埋怨:巩固题做了千万遍,数学成绩却迟迟得不到提高!这就应引起我们的反思了。
一、在解题的方法规律处反思
例题千万道,解后抛九霄”难以到达提高解题潜力、发展思维的目的。善于作解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步作一题多变,一题多问,一题多解,挖掘例题的深度和广度,扩大例题的辐射面,无疑对潜力的提高和思维的发展是大有裨益的。
透过例题的层层变式,学生对三边关系定理的认识又深了一步,有利于培养学生从特殊到一般,从具体到抽象地分析问题、解决问题;透过例题解法多变的教学则有利于帮忙学生构成思维定势,而又打破思维定势;有利于培养思维的变通性和灵活性。
二、在学生易错处反思
学生的知识背景、思维方式、情感体验往往和成人不一样,而其表达方式可能又不准确,这就难免有”错”。例题教学若能从此切入,进行解后反思,则往往能找到”病根”,进而对症下药,常能收到事半功倍的效果!
总之,解后的反思方法、规律得到了及时的小结归纳;解后的反思使我们拨开迷蒙,看清”庐山真面目”而逐渐成熟起来;在反思中学会了独立思考。