初中数学设计大全
初中数学设计大全5篇
作为一名教学工作者,就有可能用到教学设计,教学设计是教学活动的依据,有着重要的地位。那么应当如何写教学设计呢?下面是小编整理的初中数学设计大全,欢迎大家借鉴与参考,希望对大家有所帮助。
初中数学设计大全1
教学内容:
人教版《义务教育课程标准实验教科书数学》四年级下册第80、81页的内容。
教学目标:
1.让学生在观察、操作和交流等活动中,经历认识三角形的过程。
2.认识三角形各部分名称,会画三角形的高,了解三角形具有稳定性特征。
3.体验三角形的稳定性在生活中的广泛应用,感受几何图形与现实生活的密切联系。
教学重点:
理解三角形的特性;在三角形内画高。
教学难点:
理解三角形高和底的含义,会在三角形内画高。
教学准备:
多媒体、长方形、正方形、三角形学具、小棒、钉子板、直尺、三角板。
教学过程:
一、联系实际,引出课题感知三角形
1.谈话导入。
2.学生汇报交流自己收集到的有关三角形信息。
3.教师展示三角形在生活中应用的图片。
谈话引出课题:“你想学习有关三角形的什么知识呢?(板书课题:三角形的认识。)
二、动手操作,探索新知
1.动手制作三角形,概括三角形定义。
(1)学生利用老师提供的材料动手操作,选择自己喜欢的方式做一个三角形。(制作材料:小棒、钉子板、直尺、三角板。)
(2)学生展示交流制作的三角形,并说说自己是怎么做的。
(3)观察思考:这些三角形有什么相同地方?
(4)认识三角形组成,初步概括三角形定义。
(5)教师出示有关图形,引起学生质疑,通过学生思考讨论,正确概括出三角形定义。
(6)判断练习。
2.理解三角形的底和高。
(1)情境创设。
“美丽的南宁邕江上有一座白沙大桥,从侧面看大桥的框架就是一个三角形,工程师想测量大桥从桥顶到桥面的距离,你认为怎样去测量?”
(2)出示白沙大桥实物图和平面图。
(3)学生在平面图上试画出测量方法。
(4)学生展示并汇报自己的测量方法。
(5)学生阅读课本自学三角形底和高的有关内容。
(6)师生共同学习三角形高的画法。
(7)学生练习画高。
3.认识三角形的稳定性。
(1)联系实际生活,为学生初步感受三角形的稳定性做准备。
(2)动手操作学具,体验三角形的稳定性。
(3)利用三角形的稳定性,解决实际生活问题。
(4)学生联系实际,找出三角形稳定性在生活中的应用。
(5)欣赏三角形在生活中的应用。
三、总结本课内容
1.学生说说本节课收获。
2.教师总结。
初中数学设计大全2
教学内容:
人教版第九册第三单元的《三角形面积的计算》。
教学目的:
(一)理解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。
(二)通过学生动手拼摆,渗透旋转、平移的数学思想,引导学生用多种方法推导公式,发散学生的思维,培养学生求异思维的能力。
教学重点:
掌握三角形面积的计算方法。
教学难点:
理解三角形面积计算公式的推导过程。
教具准备:
用纸皮剪好的两个完全相同的直角三角形、锐角三角形、钝角三角形。。
教学过程():
一、复习:
提问:同学们,上节课我们学习了平行四边形面积的计算,谁能说说它的面积计算公式是怎样的?你知道它是通过什么方法推导出来的?
二、导入新课:
你们看,(屏幕出示三个三角形)这些是什么图形?那谁来说说看,哪个三角大?哪个三角小?(到底哪个大,哪个小呢?)要比较它们的大小,必须要知道这三个三角形的面积。那可以用什么方法知道这三个三角形的面积呢?
三、新课:
(一)好,我们就用数方格的方法来求这三个三角形的.面积。同样每个方格表示1平方厘米。
下面,就请同学们拿出老师发给你们的方格纸,请你数出这三个三角形的面积,看谁数的又对又快。
小结:通过数方格,我们得到了这三个三角形的面积都是12平方厘米,因此,它们的面积是相等的。
那你们觉得用数方格的方法计算三角形的面积,方便吗?既不方便,又不精确。
像一块大的三角形土地,你能用数方格的方法求出它们的面积吗?那有没有更好的方法呢?(把三角形转化成已经学过的图形来计算面积)你真聪明
师:这才是最科学的方法。今天,我们继续用这种方法研究三角形的面积。板书:三角形面积的计算
师:在研究之前,请同学们仔细观察,张老师把这一张长方形纸这样对折,对折出来的是什么图形?那么,折出的其中一个直角三角形是不是这张长方形纸的一半呢?(老师把它剪开,重叠)我们会发现这2个直角三角形是完全一样的,所以其中一个直角三角形就是这张长方形纸的一半。
(二)下面老师就请同学们拿出给你们准备的2个直角三角形、2个钝角三角形,请分别把它们叠起来,发现什么?(重合)说明了什么?(2个直角三角形完全一样的,2个……)
那就请同学们想一想:用2个完全一样的三角形可以拼成哪些已学过的图形?
1、先用2个完全一样的直角三角形拼拼看?
(长方形、平行四边形、形状不同的三角形)的面积我们会计算吗?我们只会计算长方形和平行四边形的面积,那我们就请拼成平行四边形的同学来演示,说说你是怎样拼的?(同学演示)
我们一起来看一下电脑是怎样清楚地操作的?
2、看清楚了吗?好,我们可以用这种方法想一想,能把2个完全一样的锐角三角形、钝角三角形拼成一个平行四边形吗?开始操作,同桌可互相说说我是怎样拼的?分别请2个同学上台演示。(能吗?)说得真好
3、小结:通过刚才的操作我们把2个完全一样的直角三角形、锐角三角形、钝角三角形,都可以拼成一个什么图形?(平行四边形)谁能把这句话再概括一下,也就是,只要是(2个完全一样的三角形都可以拼成一个平行四边形)齐读回答真好
4、接下来,老师要请同学们仔细观察,你们用2个完全一样的三角形拼成的一个平行四边形。
想一想:1、每个三角形的面积与拼成的平行四边形的面积有什么关系?2、这个平行四边形的底和高分别与三角形的底和高有什么关系?
开始观察,观察好,同桌互相交流,后回答,屏幕演示。
反馈提问:“为什么要除以2?”
5、翻书P76,填充,齐读,同样我们也可以用字母面积公式
板书:
等底等高
三角形的面积=平行四边形的面积÷2表示什么意思
=底×高÷2
s=ah÷2
(三)要求三角形的面积必须知道哪几个条件?然后根据(三角形的面积=底×高÷2)计算,注意千万不能忘记÷2,下面就利用三角形面积的计算公式来计算三角形的面积。
1、出示“想一想”:学生读要求,个别回答,校正,一样的举手,不一样的举手。
2、同样我们还可以利用三角形面积计算公式来计算物体表面是三角形的面积。
出示例:求的是什么?我们应根据什么?请同学们做在自备本上。
3、同学们做得真认真,下面老师就要考考同学们有没有掌握今天所学的知识。
请看第1个题目:
1、下面平行四边形的面积是12平方厘米,求出涂黄色部分的面积。
2、判断,说明理由:(请用手势表示)
2个三角形都可以拼成一个平行四边形。
三角形底是6cm,高是3cm,面积是18cm。
三角形底是8分米,高是40cm,面积是16平方分米。
三角形底是9米,高是4米,面积是18米。
从以上练习,你认为我们在计算三角形面积时应该注意些什么?1、÷2
2、单位统一
3、面积单位
3、选择:
下列哪个三角形是4×3÷2=6平方cm。
单位:厘米
33
44
小结:我们在做求三角形面积时一定要注意……
一个三角形的底是20厘米,高是2.5分米,它的面积是()
1、20×2.5÷22、20×2.53、20×25÷2
小结:你认为在做作业时注意()
4、求每个三角形的面积(只列式不计算)
底是4.2米,高是2米。
底是3分米,高是20厘米。
高是6米,高比底短2米。
底是12米,高是底的一半。
四、总结:今天,同学们学得非常认真。谁来说说看,这节课,我们一起学习了什么?它的面积计算公式是怎样的?我们在计算它的面积时一定要注意别忘了÷2。
你们知道吗,大约在2000年前,我国数学名著《九章算术》就论述了“圭田术日,半广的乘正从”我们的祖先老早就研究出三角形的面积=底×高÷2你们说,他们是不是很了不起呀。
三角形的土地一半底高
学了这些知识,有没有不懂的问题问老师了?或有什么想法问老师的?
出示思考:
初中数学设计大全3
【教学内容】:人教版第八册第85页例5及“做一做”和练习十四的第9、10、12题。
【课程标准】:认识三角形,通过观察、操作、了解三角形内角和是180度。
【学情分析】:
学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生是不陌生的,因为学生有以前认识角、用量角器量三角板三个角的度数以及三角形的分类的基础,学生也有提前预习的习惯,很多孩子都能回答出三角形的内角和是180度,但是他们却不知道怎样才能得出三角形的内角和是180度。另外,经过三年多的学习,学生们已具备了初步的动手操作能力、主动探究能力以及小组合作的能力。
【学习目标】:
1、结合具体图形能描述出三角形的内角、内角和的含义。
2、在教师的引导下,通过猜测和计算能说出三角形的内角和是180°。
3、在小组合作交流中,通过动手操作,实验、验证、总结三角形的内角和是180°,同时发展动手动脑及分析推理能力。
4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。
【评价任务设计】:
1、利用孩子已有经验,通过教师的提问和引导以及学生的直观观察,说出三角形的内角、内角和的含义。达成目标1。
2、在教师的引导下,以游戏的形式学生通过猜测三角形的内角和是多少度,然后通过计算说出三角形的内角和是180°的结论。达成目标2。
3、在小组合作交流中,通折一折、拼一拼和摆一摆的动手操作、实验、验证并归纳总结出三角形的内角和是180°。达成目标3。
4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。通过“做一做”和习题第9、10、12题达成目标4和目标3。
【重难点】
教学重点:探索和发现三角形的内角和是180°。
教学难点:充分发挥学生的主体作用,自主探索和发现三角形的内角和是180°
【教学过程】
一、复习准备。
1、三角形按角的不同可以分成哪几类?
2、一个平角是多少度?1个平角等于几个直角?两个三角板上各个角的度数?
二、探究新知
(一)创设情境,生成问题,认识三角形的内角及内角和
(播放课件)在图形王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“你虽然有一个钝角,可其它两个角都很小。但是我的三个角都不是很小。我的内角和比你大”。直角三角形说:“别争了,三角形的内角和是180°,我们的内角和是一样大的。”
师:动画片看完了,请大家想一想,什么是三角形的内角和?
师引导学生说出三角形三个内角的度数和叫做三角形的内角和。
多媒体展示:三条线段在围成三角形后,在三角形内形成了三个角(课件闪烁三个角的弧线),我们把三角形内的这三个角,分别叫做三角形的内角(板书:内角),这三个内角的度数的和就叫做三角形的内角和。
(达成目标1:利用多媒体播放动画和孩子已有的经验,通过教师的提问和引导,学生说出什么叫三角形的内角及内角和达成目标1。多媒体创设的情景也为目标二打好铺垫)
(二)、引导猜测三角形的内角和是180度
师:在课件展示的直角三角形、钝角三角形、锐角三角形的对话中,你赞同谁的观点?
预设:学生回答直角三角形。
师:你为什么这么认为呢?
生:我是想三角板上三个角的度数是90度、45度、45度加起来是180度,90度、60度、30度加起来也是180度。
(达成目标2:激发引导学生运用已有经验猜三角形的内角和而不是盲目猜,激起学生的疑问和好奇心,这样在教师的引导下,学生通过猜测三角形的内角和是多少度,然后通过计算说出三角形的内角和是180°的结论。)
(三)、验证三角形的内角和是180度
1.确定研究范围
师:研究三角形的内角和,是不是应该包括所有的三角形?只研究这一个行不行?(不行)那就随便画,挨个研究吧。(学生反对)那该怎样去验证呢?请你们想个办法吧!
师:分类验证是科学验证的一种好方法,下面我们就用分类验证的方法来验证一下,看看三角形的内角和是不是180°?
2.操作验证
教师让每个学习小组拿出课前制作的各种各样的三角形,先找到三个内角,在每个内角标上序号1、2、3。然后请任意用一个三角形,想办法验证我们的猜想。如果有困难,可以启用老师提供的“智慧锦囊”或者寻求同学的帮助。
智慧锦囊:
(1)要知道三个内角的和,只要知道三个角分别是多少度就可以了,你觉得哪个工具可以测出角的度数?试一试。
(2)180°的角是个特殊的角,它是个什么角?你能想办法将这三个内角转化成这样的角吗?
3.汇报交流
师:谁来汇报你的验证结果?
(1)测算法
师小结:用量的方法验证既然有误差、不准,结论就难以让人信服,那有没有办法更好地验证我们的猜测呢?谁还有别的方法?
(2)剪拼法
(3)折拼法
师小结:用拼和折的方法都能将三角形的三个内角转化成一个平角,从而借助我们学过的平角知识证明三角形的内角和确实是180°,你们真会动脑筋!
(4)推算法
①把一个长方形沿对角线分成两个完全一样的直角三角形。因为长方形的内角和是360°,所以一个直角三角形的内角和等于180°。(课件演示过程)
师:直角三角形的内角和已经证明了是180°,现在我们只要能证明:锐角三角形和钝角三角形的内角和也是180°就可以了。
课件演示
②一个锐角三角形,从顶点往下画一条垂线,将三角形分为两个直角三角形,因为我们已经知道直角三角形的内角和是180°,所以两个直角三角形的度数和就是360°,减去两个直角的和180°,就是要证明的三角形内角和,肯定是180°。
4.总结提炼
师:孩子们,刚才我们通过“量――拼――折――推”的方法分类验证了三角形的内角和是()度?
现在可以下结论了吗?
(板书:三角形三个内角和等于180°。)
师:那在“三角形的争吵中”谁是对的?
(达成目标3。此环节让学生通过“量――拼――折――推”的方法分类验证了三角形的内角和是180度。此环节充分体现了学生学习的主动性。)
(四)利用三角形内角和是180解决问题
1、看图,求出未知角的度数。
2、书本85页“做一做”
在一个三角形中,∠1=140。,∠3=25。,求∠2的度数。
(达成目标3和目标4:能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。通过“做一做”达成目标3和目标4.)
三、目标达成检测方案:
1、求出三角形各个角的度数。
2、埃及金字塔建于4500年前的埃及古王朝时期,它是用巨大石块修砌成的方锥形建筑物,外形像中文“金”字,故名“金字塔”。金字塔大小、高矮各异,外表有四个侧面,每个侧面都是等腰三角形。人们量得这个三角形的一个底角是64度。
四、课堂小结,提升认识
同学们,这节课你有哪些收获?我们是怎样得到“三角形内角和等于180度”这个结论的?
师:是啊,今天咱们不但知道了三角形的内角和是180°,更重要的是我们经历了探究三角形内角和的验证方法。咱们从猜想出发,经过验证(用量、拼、折、推等)得到了结论并利用结论解决了一些问题。孩子们,其实我们在不知不觉中已经走了数学家的探究历程……希望同学们在今后的学习中大胆应用,勇于创新,做最棒的自己
初中数学设计大全4
【活动目标】
1、通过观察、操作认识三角形的特征并能找出和三角形相似的物体。
2、培养观察能力和操作能力。
3、培养对图形的兴趣和数学活动常规。
【活动准备】
1、趣味练习,找各种形状的物品
2、展示ppt
【活动过程】
一、导入
教师游戏口吻引出三角形:有个图形宝宝来我们班做客,你们想知道是什么图形宝宝吗?
二、展开
1.趣味练-找相同形状采用游戏法引导幼儿在众物品中寻找三角形的物品。(三角铁)
2.引导幼儿观察三种三角形的共同特征,发现三角形有三条边、三个角。
3.通过动手操作进一步掌握三角形的特征。
(1)引导幼儿从图形筐中找出三角形,分别数出边、角的数量,进一步掌握三角形特征。
(2)引导幼儿观察并说出三角形像什么。
4.通过游戏进一步巩固所学内容。
(1)游戏“猜猜我是谁”?
组织幼儿根据图形渐渐露出部分猜测出图形,进一步巩固幼儿对图形特征的认识。
(2)ppt图形幼儿从各种食物中找出三角形食物。(三明治,比萨。)
5.引导幼儿观察并找出活动室中那些物品像三角形。
三、活动延伸
教师小结后,请幼儿到生活环境中进一步寻找三角形的踪迹。
初中数学设计大全5
教学目标:
1、知识目标:
(1)掌握已知三边画三角形的方法;
(2)掌握边边边公理,能用边边边公理证明两个三角形全等;
(3)会添加较明显的辅助线.
2、能力目标:
(1)通过尺规作图使学生得到技能的训练;
(2)通过公理的初步应用,初步培养学生的逻辑推理能力.
3、情感目标:
(1)在公理的形成过程中渗透:实验、观察、归纳;
(2)通过变式训练,培养学生“举一反三”的学习习惯.
教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。
教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。
教学用具:直尺,微机
教学方法:自学辅导
教学过程:
1、新课引入
投影显示
问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?
这个问题让学生议论后回答,他们的答案或许只是一种感觉。于是教师要引导学生,抓住问题的本质:三角形的三个元素?D?D三条边。
2、公理的获得
问:通过上面问题的分析,满足什么条件的两个三角形全等?
让学生粗略地概括出边边边的公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)
公理:有三边对应相等的两个三角形全等。
应用格式:(略)
强调说明:
(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)
(3)、此公理与前面学过的公理区别与联系
(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。
(5)说明AAA与SSA不能判定三角形全等。
3、公理的应用
(1)讲解例1。学生分析完成,教师注重完成后的点评。
例1如图△ABC是一个钢架,AB=ACAD是连接点A与BC中点D的支架
求证:AD⊥BC
分析:(设问程序)
(1)要证AD⊥BC只要证什么?
(2)要证∠1=只要证什么?
(3)要证∠1=∠2只要证什么?
(4)△ABD和△ACD全等的条件具备吗?依据是什么?
证明:(略)
(2)讲解例2(投影例2)
例2已知:如图AB=DC,AD=BC
求证:∠A=∠C
(1)学生思考、分析、讨论,教师巡视,适当参与讨论。
(2)找学生代表口述证明思路。
思路1:连接BD(如图)
证△ABD≌△CDB(SSS)先得∠A=∠C
思路2:连接AC证△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD
(3)教师共同讨论后,说明思路1较优,让学生用思路1在练习本上写出证明,一名学生板书,教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。
例3如图,已知AB=AC,DB=DC
(1)若E、F、G、H分别是各边的中点,求证:EH=FG
(2)若AD、BC连接交于点P,问AD、BC有何关系?证明你的结论。
学生思考、分析,适当点拨,找学生代表口述证明思路
让学生在练习本上写出证明,然后选择投影显示。
证明:(略)
说明:证直线垂直可证两直线夹角等于,而由两邻补角相等证两直线的夹角等于,又是很重要的一种方法。
例4如图,已知:△ABC中,BC=2AB,AD、AE分别是△ABC、△ABD的中线,
求证:AC=2AE.
证明:(略)
学生口述证明思路,教师强调说明:“中线”条件下的常规作辅助线法。
5、课堂小结:
(1)判定三角形全等的方法:3个公理1个推论(SAS、ASA、AAS、SSS)
在这些方法中,每一个都需要3个条件,3个条件中都至少包含条边。
(2)三种方法的综合运用
让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。
6、布置作业:
a、书面作业P70#11、12
b、上交作业P70#14P71B组3
初中数学设计大全相关文章:
★ 教学