最新高一数学月考试卷
高一新生要根据自己的条件,以及高中阶段学科知识交叉多、综合性强,以及考查的知识和思维触点广的特点,找寻一套行之有效的学习方法。这里给大家分享一些关于最新高一数学月考试卷,方便大家学习。
最新高一数学月考试卷
一、选择题(每小题3分,共36分,每小题只有一个正确答案)
1.设全集U=M∪N={1,2,3,4,5},M∩(∁_UN)={2,4},则N=()
A.{1,2,3}B.{1,3,5}C.{1,4,5}D.{2,3,4}
2.已知函数f(x)=√(1-x)/(2x^2-3x-2)的定义域是()
A.(-∞,1]B.(-∞,-1/2)
C.(-∞,2]D.(-∞,-1/2)∪(-1/2,1]
3.设集合M={x|x=k/2+1/4,k∈Z},N={x|x=k/4+1/2,k∈Z},则正确的是()
A.M=NB.M⊆NC.N⊆MD.M∩N=Ø
4.若f(x)是偶函数,且当x≥0时,f(x)=x-1,则f(x-1)<0的解集是()
A.(0,2)B.(-2,0)C.(-1,1)D.(-∞,0)∪(1,2)
5.已知集合A={1,2},B={x|mx-1=0},若A∩B=B,则符合条件的实数m的值组成的集合为()
A.{1,1/2}B.{-1,1/2}C.{1,0,1/2}D.{1,-1/2}
6.函数f(x)=(4^x+1)/2^x的图像()
A.关于原点对称B.关于直线y=x对称
C.关于x轴对称D.关于y轴对称
7.已知函数f(x)=1/√(ax^2+3ax+1)的定义域为R,则实数a的取值范围是()
A.(0,4/9)B.[0,4/9]C.(0,4/9]D.[0,4/9)
8.已知三个实数a,b=a^a,c=a^(a^a),其中0.9
A.a
9.函数f(x)=x^3/(e^x-1)的图象大致是()
10.若函数y=x^2-4x-4的定义域为[0,m],值域为[-8,-4],则m的取值范围是()
A.(0,2]B.(2,4]C.[2,4]D.(0,4)
11.设f(x)={((x-a)^2,x≤0,@x+1/x+a,x>0.)┤若f(0)是f(x)的最小值,则实数a的取值范围为()
A.[-1,2]B.[-1,0]C.[1,2]D.[0,2]
12.定义在[-2018,2018]上的函数f(x)满足:对于任意的x_1,x_2∈[-2018,2018],有〖f(x〗_1+x_2)=f(x_1)+f(x_2)-2017,且x>0时,有f(x)>2017.若f(x)的、最小值分别为M,N,则M+N=()
A.2016B.2017C.4032D.4034
二、填空题(每小题4分,共16分)
13.1/(√2-1)-(3/5)^0+(9/4)^(-1/2)+∜((2/3-√2)^4=).
14.函数y=|2^x-1|与y=a的图像有两个交点,则实数a的取值范围是.
15.已知f(x)是定义在R上的奇函数,且f(x+2)=-1/(f(x)),当2≤x≤3时,f(x)=x,则f(105.5)=.
16.若函数f(x)={(a^x,x>1,@(3-a)x+1,x≤1.)┤是R上的增函数,则实数a的取值范围是.
三、解答题(共48分)
17.(本小题满分10分)已知f(x)是定义在(0,+∞)上的单调递增函数,且f(xy)=f(x)+f(y),f(3)=1.
(1)求f(1);
(2)若f(x)+f(x-8)≤2,求x的取值范围.
18.(本小题满分12分)已知集合A={x|2<2^x<8},B={x|2m
(1)若A∩B=(1,2),求〖(∁〗_RA)∪B;
(2)若A∩B=Ø,求实数m的取值范围.
19.(本小题满分12分)已知
(1)当,时,求函数的值域;
(2)若函数在区间[0,1]内有值-5,求a的值.
20.(本小题满分14分)已知定义在R上的函数f(x)=(b-2^x)/(2^(x+1)+a)是奇函数.
(1)求实数a,b的值;
(2)判断f(x)在(-∞,+∞)上的单调性并用定义法证明;
(3)若f(k∙3^x)+f(3^x-9^x+2)>0对任意x≥1恒成立,求k的取值范围.
高一数学考试技巧
(一) 审题与解题的关系
有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。只有耐心仔细地审题,准确地把握题目中的关键词与量(如“至少”,“a>0”,自变量的取值范围等等),从中获取尽可能多的信息,才能迅速找准解题方向。
(二)“会做”与“得分”的关系
要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现“会而不对”“对而不全”的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的“跳步”,使很多人丢失1/3以上得分,代数论证中“以图代证”,尽管解题思路正确甚至很巧妙,但是由于不善于把“图形语言”准确地转译为“文字语言”,得分少得可怜;再如去年理17题三角函数图像变换,许多考生“心中有数”却说不清楚,扣分者也不在少数。只有重视解题过程的语言表述,“会做”的题才能“得分”。
(三) 快与准的关系
在目前题量大、时间紧的情况下,“准”字则尤为重要。只有“准”才能得分,只有“准”你才可不必考虑再花时间检查,而“快”是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。
(四) 难题与容易题的关系
拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。近年来考题的顺序并不完全是难易的顺序,如去年理19题就比理20、理21要难,因此在答题时要合理安排时间,不要在某个卡住的题上打“持久战”,那样既耗费时间又拿不到分,会做的题又被耽误了。这几年,数学试题已从“一题把关”转为“多题把关”,因此解答题都设置了层次分明的“台阶”,入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有“咬手”的关卡,看似难做的题也有可得分之处。所以考试中看到“容易”题不可掉以轻心,看到新面孔的“难”题不要胆怯,冷静思考、仔细分析,定能得到应有的分数.
高一数学学习方法
(1)万丈高楼平地起,基础最关键!
高数必修四知识点比较零碎但又重要,涉及概念多、公式多、推理多,所以第一步必须要扎实基础,做到课前预习,课中划重点、记笔记,课后及时温习知识点、做习题!
记住这本内容主要就是三角函数,余弦、正弦两角和差换算公式、正切、余切换算公式,能把这些掌握了,数4几乎全懂了,所以,基础知识点你必须加强记忆,多做题!
(2)会学习,知重点,掌其道,拿高分!
三角函数的图像与性质,必须掌握,每年高考都会考,这里主要记五点:定义域、值域、周期性、奇偶性、单调性,尤其奇偶性、单调性是重中之重!
这一块如果自己听不懂,一定要多跟同学交流,多请教老师,甚至你可以进行专题突破练习,只要做题多了,才会把知识点变成自己的!
(3)重点知识点,要加强突破!
向量是高数必修四最难的了,并且每年高考涉及向量的题就有2~4道,都是和其它知识点串联出题的!所以既然是最难,又是常考的题,那么学生们一定要特别注重,把向量知识完全吃透,加强向量知识点专题的训练,达到会一道题型会百道题!
推荐方法:专题突破,此方法可用在所有学科,即是某一类型题或某一章节题不会,加强此题的重点攻破,效果很好,现在参考书特别多,如果不会,就买参考书进行专题突破。
(4)信心、信心、信心,学习一定要有信心!
高中,科目较多,压力大,并且学生处于青春最敏感时期,所以想要拿高分,想要考理想大学,你必须有信心,有信心去面对所有的压力,此时心态最重要;不论成绩是好是坏,一定要保持一颗积极向上的心态。