数学高一月考试卷
高一新生要根据自己的条件,以及高中阶段学科知识交叉多、综合性强,以及考查的知识和思维触点广的特点,找寻一套行之有效的学习方法。这里给大家分享一些关于数学高一月考试卷 ,方便大家学习。
数学高一月考试卷
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的)
1.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁UB=()
A.{2,5}B.{3,6}
C.{2,5,6}D.{2,3,5,6,8}
2.已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()
A.5B.4
C.3D.2
3.已知集合A={x|x2-2x>0},B={x|-5<x<5},则()< p="">
A.A∩B=∅B.A∪B=R
C.B⊆AD.A⊆B
4.设P,Q为两个非空实数集合,定义集合PxQ={z|z=a÷b,a∈P,b∈Q},若P={-1,0,1},Q={-2,2},则集合PxQ中元素的个数是()
A.2B.3
C.4D.5
5.已知全集U=Z,集合A={x|x2=x},B={-1,0,1,2},则图中阴影部分所表示的集合为()
A.{-1,2}B.{-1,0}
C.{0,1}D.{1,2}
6.若集合P={x|3
A.(1,9)B.[1,9]
C.[6,9)D.(6,9]
7.下列指数式与对数式互化不正确的一组是()
A.e0=1与ln1=0B.log39=2与912=3
C.8-13=12与log812=-13D.log77=1与71=7
8.若loga7b=c,则a,b,c之间满足()
A.b7=acB.b=a7c
C.b=7acD.b=c7a
9.有以下四个结论:①lg(lg10)=0;②ln(lne)=0;③若10=lgx,则x=10;④若e=lnx,则x=e2.其中正确的是()
A.①③B.②④
C.①②D.③④
10.已知2a∈A,a2-a∈A,若A只含这两个元素,则下列说法中正确的是()
A.a可取全体实数
B.a可取除去0以外的所有实数[
C.a可取除去3以外的所有实数
D.a可取除去0和3以外的所有实数
11.集合A中的元素y满足y∈N且y=-x2+1,若t∈A,则t的值为()
A.0B.1
C.0或1D.小于等于1
12.设a,b∈R,集合A中含有0,b,ba三个元素,集合B中含有1,a,a+b三个元素,且集合A与集合B相等,则a+2b=()
A.1B.0
C.-1D.不确定
二、填空题(本大题共4小题,每小题5分,共20分,把答案写在题中的横线上)
13.已知集合A={0,2,3},B={x|x=ab,a,b∈A且a≠b},则B的子集有________个.
14.已知集合A={-2,1,2},B={a+1,a},且B⊆A,则实数a的值是________.
9.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有________人..
15.如果集合A={x|ax2+2x+1=0}只有一个元素,则实数a的值为________.
16.已知集合A中只含有1,a2两个元素,则实数a不能取的值为________.
三、解答题(本大题共2小题,共25分,解答应写出文字说明,证明过程或演算步骤)
17.已知函数f(x)=x2-3x-10的两个零点为x1,x2(x1
18.设集合A={x|x2-3x+2=0},B={x|x2+2(a+1)x+(a2-5)=0},
(1)若A∩B={2},求实数a的值;
(2)若A∪B=A,求实数a的取值范围;
(3)若U=R,A∩(∁UB)=A,求实数a的取值范围.
19.若所有形如3a+2b(a∈Z,b∈Z)的数组成集合A,判断6-22是不是集合A中的元素.
20.设集合A中含有三个元素3,x,x2-2x.
(1)求实数x应满足的条件;
(2)若-2∈A,求实数x.
高一数学学习方法
1弃重求轻,培养兴趣
女生数学能力的下降,环境因素及心理因素不容忽视。目前社会、家庭、学校对学生的期望值普遍过高。而女生性格较为文静、内向,心理承受能力较差,加上数学学科难度大,因此导致她们的数学学习兴趣淡化,能力下降。因此,教师要多关心女生的思想和学习,经常同她们平等交谈,了解其思想上、学习上存在的问题,帮助其分析原因,制定学习计划,清除紧张心理,鼓励她们敢问、会问,激发其学习兴趣。同时,要求家长能以积极态度对待女生的数学学习,要多鼓励少指责,帮助她们弃掉沉重的思想包袱,轻松愉快地投入到数学学习中;还可以结合女性成才的事例和现实生活中的实例,帮助她们树立学好数学的信心。事实上,女生的情感平稳度比较高,只要她们感兴趣,就会克服困难,努力达到提高数学能力的目的。
2开门造车,注重方法
在学习方法方面,女生比较注重基础,学习较扎实,喜欢做基础题,但解综合题的能力较差,更不愿解难题;女生上课记笔记,复习时喜欢看课本和笔记,但忽视上课听讲和能力训练;女生注重条理化和规范化,按部就班,但适应性和创新意识较差。因此,教师要指导女生开门造车,让她们暴露学习中的问题,有针对地指导听课,强化双基训练,对综合能力要求较高的问题,指导她们学会利用等价转换、类比、化归等数学思想,将问题转化为若干基础问题,还可以组织她们学习他人成功的经验,改进学习方法,逐步提高能力。
3笨鸟先飞,强化预习
女生受生理、心理等因素影响,对知识的理解、应用能力相对要差一些,对问题的反应速度也慢一些。因此,要提高课堂学习过程中的数学能力,课前的预习至关重要。教学中,要有针对性地指导女生课前的预习,可以编制预习提纲,对抽象的概念、逻辑性较强的推理、空间想象能力及数形结合能力要求较高的内容,要求通过预习有一定的了解,便于听课时有的放矢,易于突破难点。认真预习,还可以改变心理状态,变被动学习为主动参与。因此,要求女生强化课前预习,笨鸟先飞。
4固本扶元,落实双基
女生数学能力差,主要表现在对基本技能的理解、掌握和应用上。只有在巩固基础知识和掌握基本技能的前提下,才能提高女生的综合能力。因此,教师要加强对旧知识的复习和基本技能的训练,结合讲授新课组织复习;也可以通过基础知识的训练,使学生对已学的知识进行巩固和提高,使他们具备学习新知识所必需的基本能力,从而对新知识的学习和掌握起到促进作用。
5扬长补短,增加自信
在数学学习过程中,女生在运算能力方面,规范性强,准确率高,但运算速度偏慢、技巧性不强;在逻辑思维能力方面,善于直接推理、条理性强,但间接推理欠缺、思维方式单一;在空间想象能力方面,直觉思维敏捷、表达准确,但线面关系含混、作图能力差;在应用能力方面,解模能力较强,但建模能力偏差。因此,教学中要注意发挥女生的长处,增加其自信心,使其有正视挫折的勇气和战胜困难的决心。特别要针对女生的弱点进行教学,多讲通解通法和常用技巧,注意速度训练,分析问题既要由因导果,也要执果索因,暴露过程,激活思维;注重数形结合,适当增加直观教学,训练作图能力,培养想象力;揭示实际问题的空间形式和数量关系,培养建模能力。
6举一反三,提高能力
上课能听懂,作业能完成,就是成绩提不高。这是高中阶段女生。共同的心声。由于课堂信息容量小,知识单一,在老师的指导下,女生一般能听懂;课后的练习多是直接应用概念套用算法,过程简单且技能技巧要求较低,她们能完成。但因速度和时间等方面的影响,她们不大注重课后的理解掌握和能力提高。因此,教学中要编制套题(知识性,技能性)、类题(基础类,综合类,方法类)、变式题(变条件,变结论,变思想,变方法),并对其中具有代表性的问题进行详尽的剖析,起到举一反三、触类旁通的作用,这有利于提高女生的数学。
高一数学考试技巧
(一) 审题与解题的关系
有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。只有耐心仔细地审题,准确地把握题目中的关键词与量(如“至少”,“a>0”,自变量的取值范围等等),从中获取尽可能多的信息,才能迅速找准解题方向。
(二)“会做”与“得分”的关系
要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现“会而不对”“对而不全”的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的“跳步”,使很多人丢失1/3以上得分,代数论证中“以图代证”,尽管解题思路正确甚至很巧妙,但是由于不善于把“图形语言”准确地转译为“文字语言”,得分少得可怜;再如去年理17题三角函数图像变换,许多考生“心中有数”却说不清楚,扣分者也不在少数。只有重视解题过程的语言表述,“会做”的题才能“得分”。
(三) 快与准的关系
在目前题量大、时间紧的情况下,“准”字则尤为重要。只有“准”才能得分,只有“准”你才可不必考虑再花时间检查,而“快”是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。
(四) 难题与容易题的关系
拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。近年来考题的顺序并不完全是难易的顺序,如去年理19题就比理20、理21要难,因此在答题时要合理安排时间,不要在某个卡住的题上打“持久战”,那样既耗费时间又拿不到分,会做的题又被耽误了。这几年,数学试题已从“一题把关”转为“多题把关”,因此解答题都设置了层次分明的“台阶”,入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有“咬手”的关卡,看似难做的题也有可得分之处。所以考试中看到“容易”题不可掉以轻心,看到新面孔的“难”题不要胆怯,冷静思考、仔细分析,定能得到应有的分数.