小学数学可能性教案
作为一名教职工,通常需要准备好一份教案,教案有利于教学水平的提高,有助于教研活动的开展。我们应该怎么写教案呢?这里给大家分享一些关于小学数学可能性教案,方便大家学习。
小学数学可能性教案篇1
教学目标:
1、使学生进步体会事件发生的可能性,体验可能性的大小。
2、让学生感受数学与生活实际的联系,激发学生学习数学的兴趣,培养自主探索的意识和他人团结协作的精神。 教学重点 如何判断游戏的公平性和可能的大小。
教学过程:
一、游戏导入
摸球游戏。(注:不透明容器,一个是黄球多,一个是球同样多)二个学生来各摸10次。估计袋中黄球多还是白球多(师:你是怎样想的?)
二、实践感悟
1、透明容器(一黄、一白)摸球比赛: 规则:男生摸白球,女生摸黄球,摸得多的取胜。 师:你想如何放球?(生:男:白球多一些;女生:白球多一些) [预测:学生有争议,并学生说明反对理由。板书:数量不一样――不公平] 师:哪你们能不能设计一个公平的游戏呢?(生:球要同样多。板书:数量相等―――公平。)
2、开始比赛:(站在男生一方的举手,站在女生一方的举手。认为打平的举手)
(1)比赛并记录
[预测:有可能男生胜,有可能女生胜。问败的一方,我们的游戏规则是公平的,为什么会败给对方呢?生:一次不能定输赢,再来。]
(2)修改游戏规则。再比 师:问输的王一方:你们服输吗? [预测:服;不服。还要摸] 师:问男生和女生,再比你们一定能赢吗?板书:一定 (生:不一定,一定,可能)
(3)板书课题《可能性》 师:同学们,你对事物的可能性是如何理解的?
(4)、小结:虽然两种球的数量相等。也不能说他摸到的数量就一定相等。可以用一个数学语言《可能性》相等。这个游戏是公平的。
3、是啊:足球比赛,球先给哪个呢?我们的裁判怎样做的呢?你认为公平吗?关于抛硬币。世界上5位数学试验结果。(课件)
三、互动生成 设计摸球游戏。(摸一次)
A:
1、一定能摸到黄球。
2、可能摸到黄球。(你为什么要这样放)
3、不可能摸到黄球。
B:
1、摸到黄球的可能性大。(都要说出想法)
2、摸到白球的可能性大。
3、摸到黄球和白球的可能相等。
四、例2变式练习
(一)4张红桃牌:(设计成判断题(任意摸一张)并说出理由。)
1、我一定能摸到红桃A。( )
2、不可能摸到红桃A。( )
3、摸到红桃A的可能性大。( )
4、摸到红桃扑克牌的可能性大。( )
5、摸到的一定是红桃扑克牌。( )
(二)红桃4换成黑桃4(再判断,怎样说才正确)课件
(三)两张梅花6,一张梅花8和10.(任意摸一张)
1、用可能、不可能、一定说一句话。
2、可能性相等、可能性大、可能性小说一句话。
(四)讨论你认为可能性相等和一定相等有什么区别。
五、总结
我们学习可能性的三种说法:板书:可能性相等、可能性大、可能性小。
小学数学可能性教案篇2
教学目标:
1.通过媒体能够列出简单的试验所有可能发生的结果。
2.通过模拟实验,知道事件发生的可能性是有大小的。
3.能对一些简单事件发生的可能性做出描述,并和同伴交换想法。
教学过程:
一.引入:
1.投飞镖游戏:
计算机模拟两个飞镖盘:
先让同桌进行比赛,各投五次(计算机发镖)
学生发现游戏不公平,说出理由。
2.验证:计算机同时投掷20镖。(告知学生,同样的个数,同样的投掷发现)
小结展示:两个镖盘都有可能被投到黑色和白色 区域,但是后面一个被投中的可能性更大。
3.师:今天我们来研究一下不确定事件中可能性的大小问题。
二.探究:
1.实验:出示一个透明的箱子,展示出里面的内容,再遮蔽,学生通过鼠标去摸取一个棋子,用电子表格记录,再放回去,重复20次。
2.汇总结果:从主机上展示所有同学的记录情况
(1)摸出的棋子有两种可能性,一是摸出红旗子,二是摸出兰棋子。
(2)而且发现总是摸出的红旗子的次数比兰棋子多。
3.组织讨论,思考:
为什么不会摸出其他颜色的棋子?
为什么摸出的红旗子的次数比兰棋子多。
3.反馈小结和展示:因为盒子里只有两种颜色的棋子,所以摸出棋子的可能性也只有两种;在每个棋子的大小样式都一样的情况下,每个棋子被摸出的可能性都一样大,但是红旗子的数量比兰棋子要多,所以摸出红旗子的可能性和兰棋子的可能性是不一样的。红旗子数量多,摸出红旗子的可能性就大。
演示系统再提出:再摸一次,猜猜看,摸出那种棋子的可能性大?
4.转盘辩析:
出示两种转盘,请学生预测指针停的可能性有几种?哪一种可能性大。
5.情景辩析:
小明家离车站100米左右,平时走路5分钟就可走到。今天他要出门,车子9:30到,他在9:20分准备出门?他能赶上这辆车吗?
(1)预测可能性有几种?(赶上和没赶上两种)
(2)哪一种的可能性大?
三.练习:
1.在原盘中涂上蓝色和红色两种颜色。
要求:(1)指针停在红色的可能性大。
(3)指针停在蓝色的可能性大。
2.设置模拟情景:我是小小督察员。
一个商场门口,有一个转盘抽奖活动,根据转盘来判断,商场是否有欺诈消费者的嫌疑,抽奖是否公平。
四.小结:
数学 - 可能性的大小
小学数学可能性教案篇3
课前准备
教师准备 多媒体课件 盒子及不同颜色的小球若干
学生准备 红色球若干 白色球若干 纸箱一个
教学过程
⊙联系生活,导入新课
师:同学们,你们抽过奖吗?中奖了吗?前两天我去买东西,遇见超市搞抽奖活动。抽奖规则很简单,就是摸球,摸到绿球有奖,摸到红球就没有奖。商家会怎样放球?为什么?如果你是顾客,你希望商家怎样放球?为什么?
师:其实,中奖率高低与可能性大小密切相关,今天我们就来复习可能性大小这个问题,学习了今天的内容,你就会找到抽奖时中奖率低的真正原因了。(板书课题:可能性的大小)
⊙回顾梳理,整理复习
1.课件出示情境图,根据教材中的四幅图回答书中问题。
学生小组讨论并回答问题。
2.事件发生的不确定性。
师:在我们的生活中,有很多事情是可能发生的,也有很多事情是一定会发生的,还有很多事情是不可能发生的。同学们能举例说说吗?
(1)先在小组内说一说,然后全班交流。
(2)汇报。
预设
生1:太阳不可能从西边升起。
生2:人不可能长翅膀。
生3:时间不可能倒流。
生4:妈妈今年可能会带我去外婆家过寒假。
生5:明天可能会下雨。
生6:小鸟不可能在水里游。
……
(3)教师小结。
通过同学们的发言,我们可以知道,在生活中,有的事情是可能发生的,有的事情是不可能发生的,还有的事情是一定会发生的。我们要学会用“可能”“一定”“不可能”描述事件发生的不确定性。
(4)请你用“可能”“一定”“不可能”说一说生活中的现象或事物。
3.事件发生的可能性。
师:我在盒子里面放了10个红球、8个白球和4个绿球,这些球除颜色不同外,其他都相同。任意摸出一个球,摸出哪种颜色球的可能性最大?摸出哪种颜色球的可能性最小?请同学们根据以前的学习分组讨论。
(1)学生小组交流讨论,得出结论。
(2)学生根据讨论结果汇报。
预设
生1:摸出红球的可能性最大,因为盒子里红球的数量最多。
生2:摸出绿球的可能性最小,因为盒子里绿球的数量最少。
(3)提问:现在老师想让摸出绿球的可能性变大些,摸出红球的可能性变小些,你有哪些办法呢?
小学数学可能性教案篇4
【教材分析】
(一)教学内容分析:
可能性和概率是七年级下册第三章《事件的可能性》的第3节内容。这是在学生通过具体情境了解了必然事件、不确定事件、不可能事件等概念,并在具体情境中了解事件发生的可能性的意义,会用列举法(包括列表、画树状图)统计在简单问题情境中可能发生的事件的种数的基础上,对其中的可能性事件的进一步学习和提升。通过一些简单的事例,初步认识概率的意义,导出等可能性事件的概率公式,知道不可能事件的概率为0,必然事件的概率为1,不确定事件的概率大于0且小于1。这样的安排完全是按照《新课程标准》的分步到位,螺旋式上升的整体设计。
教材中通过以下步骤建立概率的意义:通过实例认识事件发生的可能性及其大小——用事件发生的可能性的大小定义概率——在等可能性的前提下用比的形式来表示概率。其中第3个步骤“等可能性”这个前提十分重要。课本通过说理的方法来让学生认识等可能性。有关概率的概念,本教科书将在八年级下册学习频数和频率的基础上,主要安排在九年级上册学习。因此在本章教学中尽量不随意提高要求,主要是为以后的进一步学习打下扎实的基础。同时也进一步使学生了解概率的产生与发展是与生产、生活紧密联系的。
(二)学情分析
考虑到七年级学生的认知水平和知识结构,遵循启发式原则,在新课标的指导下,本节课采取发现与探究结合的教学方法。充分体现教师组织、引导、合作的作用,凸现学生的主体作用,让学生充分经历实际问题的情景,这是认识事件发生的可能性及其大小的唯一途径。教学中应通过大量的实际例子,让学生知道什么是等可能性?怎样认识两个事件发生的可能性是否相等?计算等可能事件发生的概率对学生来说不太容易。 涉及一些简单事件的概率计算,主要目的是让学生初步认识概率的意义,以及在等可能性的条件下概率的一种直观表现形式。这是学生学习了事件的可能性后的一个自然延伸。在教学中,应注意所学内容与日常生活、自然、社会和科学技术领域的联系。让学生感受到学习等可能性事件的概率的重要性和必要性。还应注意使学生在具体情境中体会事件的可能性与概率的意义。这些不仅是学习本节的关键,对于学好本章及至以后各章也是很重要的。
【教学目标】
1、 了解概率的意义
2、 了解等可能性事件的概率公式
3、 会用列举法(包括列表、画树状图)计算简单事件发生的概率
进一步认识游戏规则的公平性
【教学重点、难点】
重点:概率的意义及其表示
难点:例2涉及转盘自由转动2次,事件发生的条件构成比较复杂,是本节教学的难点。
【教学过程】
(一) 创设情境,引入新知:
引例:小红与小李被同学们推选为班长,获票数相等,谁担任正班长哪?老师决定用抽签的办法来决定:做4个纸团,其中只有1个纸团里写有“正”字。由小红从中任取1个纸团。抽出有“正”字的纸团,就决定由小红担任正班长。这个办法公平吗?如果不公平,怎样改正才会使之公平?
分析:小红从4个纸团中抽出写有“正”字的纸团的可能性是 ,即小红担任正班长的可能性是 。如果小红抽到写有“正”字的纸团,就决定由小红担任正班长,这个办法不公平。然后由学生共同合作讨论,得到改正的方法。而且,这改正的方法不止一种。要充分发挥学生的主观能动性和合作精神,让学生积极参与。
解答:这种抽签决定正班长的办法是不公平的,如果仅对小红而言是不公平的。如果小李也按这个办法实行,小李担任正班长的可能性也是 ,也就是说,双方获胜的可能性相同。这个办法才是公平的。(改正的方案不唯一)
(这样的引入,体现数学来源于生活,素材与学生现实紧密结合,从解决实际问题的欲望而促进对数学学习的兴趣,鼓励合作学习。从多角度思考,采用多种解决问题的办法,创造积极合作、讨论的氛围。)
(二) 师生互动,探索新知:
从此题解答中可以得到,在客观条件下使小红与小李抽签胜出的可能性大小相等(也称机会均等)那么才是公平的。而事实上,我们在日常生活中,常常会遇到指明可能性大小的情况:教师可举一些描述实际生活中有关可能性大小的几个例子:
①小明百分之百可以在一分钟内打字50个以上,即小明在一分钟内打字50个以上的可能性是100%。
②小华不可能在7秒内跑完100米,即小华在 秒内跑完100米的可能性是0。
③通过摇奖,要把一份奖品奖给10个人中的一个。每人得奖的可能性是 。
接着类似的可以让学生自己结合生活经验独立举一些例子。
(这样的安排是使学生有独立思考的空间并让学生充分发表自己的意见。只要合理、正确都予以高度肯定,激发学生的兴趣。但学生难免犯错,但相信同学之间也能纠错。教师放手让学生在互相讨论和互相评价中得以提高和加深对知识的理解。在学生评价中,集思广益,能体会到如何更完善和辨证地分析问题。)
然后教师归纳,在教学中我们把事件发生的可能性的大小也称为事件发生的概率,一般用 表示。事件 发生的概率也记为 ,事件 发生的概率记为 ,依此类推。
如果我们知道事件发生的可能性相同的各种结果的总数,并且知道其中事件 发生的可能的结果总数,那么就可用以下式子表示事件 发生的概率:
强调:概率的数学意义是一种比率,这个概率公式适用的条件——事件发生的各种可能结果的可能性都相等。这一点学生容易疏忽。可根据学生具体情况确定是否再举一些实例加以辨别各种可能结果的可能性是否都相等。
例如:任意抛掷一枚硬币,有“正面朝上”和“反面朝上”两种结果。由于硬币质地均匀,抛掷时具有任意性,所以出现“正面朝上”和“反面朝上”的可能性认为是相等的。适用等可能性事件的概率公式。而对于“投篮”,虽然也只有两种可能结果:“命中”与“没命中”,但由于投篮的命中率与投篮者的技术水平相关,“命中”与“没命中”的可能性通常是不相等的。
(三) 讲解例题,综合运用:
在弄清等可能性的含义后,就可以应用本节课的概率公式解决实际问题。
例1:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数是1的概率是多少?是偶数的概率是多少?是正数的概率是多少?是负数的概率是多少?
分析:由于一枚骰子有六个面。当骰子停止运动后,每一个面朝上的可能性都为 。即为等可能性事件。因此可用概率的公式计算。
解:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数有可能性相同的 种可能,即1、2、3、4、5、6。所以朝上一面的数是 只有 种可能,即朝上一面的数是 的概率 ;是偶数的有 种可能,即2、4、6。所以朝上一面的数是偶数的概率 ;是正数的有 种可能,即1、2、3、4、5、6。所以朝上一面的数是正数的概率 ;是负数的可能结果有 种,即所有可能的结果都不是负数,所以朝上一面的数是负数的概率 。
一般地,必然事件发生的概率为100%,即 。不可能事件发生的概率为0,即 。而不确定事件发生的概率介于0与1之间,即 。
(例1的目的主要巩固等可能性事件的概率公式,教师着重讲清解法的思路和方法步骤。解这类问题的基本思路是先分析判断是否适用等可能性事件的概率公式。然后统计所有可能的结果数和所求概率的事件所包含的结果数,再把它们代入公式求出所求概率。)
从例1中自然引出必然事件的概率为1,不可能事件的概率为0,不确定事件的概率为 。
(四) 练习反馈,巩固新知:
做一做:
1、 从你所在小组任意挑选一名同学参加诗朗诵活动,正好挑中你的可能性是多少?
(根据班级各小组的实际人数回答)
2、 转盘上涂有红、蓝、绿、黄四种颜色,
每种颜色的面积相同。自由转动一次转盘,
指针落在红色 区域的概率是多少?
指针落在红色或绿色 区域的概率是多少?
(1/4,1/2)
(五)变式练习,拓展应用:
例2:如图所示的是一个红、黄两色各占
一半的转盘,让转盘自由转动2次,指针2
次都落在红色 区域的概率是多少?一次落在
红色 区域,另一次落在黄色 区域的概率是多少?
分析:
(1)由于转盘上红、黄两色面积各占一半,转盘自由转动一次,指针落在黄色 区域和落在红色 区域的可能性是相同的。
(2)统计所有可能的结果数,让学生自己列表或画树状图。应注意转盘的两次自由转动意味着事件的发生分两个步骤,各种可能包括了顺序的因素。
(3)统计所求各个事件所包含的可能结果数。
解:根据如图的树状图,所
有可能性相同的结果数有4种:
黄,黄;黄,红;红,黄;红,红。
其中2次指针都落在红色 区域的可能结
果只有1种,所以2次都落在红色 区域
的概率 ;
一次落在红色 区域,另一次落在黄色 区域的可能有结果2种,所以一次落在红色 区域,另一次落在黄色 区域的概率 。
变式:在例2的条件下,再问:第一次落在红色 区域,第二次落在黄色 区域的概率是多少?讲解时注意让学生自己分析同例2的第二问的区别。从中求出变式的正确的解答为 。
(本环节主要让学生体验变式中的探究学习,培养学生的严谨的科学态度,提倡题后反思。)
(五) 反思总结,布置作业:
引导学生总结本节课的所学知识,反思有什么样的收获。进一步激发学生的学习热情,也让参与反思的学生更多。在交流的过程中学会学习,完善自己的知识体系。然后布置作业,有助于学生应用能力和创新能力的培养。
五、教学说明:
本章计算等可能性事件的概率只涉及简单的独立事件。一般每次取1个,最多取3次。教师应把握好教学要求。
小学数学可能性教案篇5
教学目标:
1、初步体验有些事件的发生是确定的,有些则是不确定的。
2、能结合已有的经验对一些可能性的事件,能用“一定”、“可能”、“不可能”等语言做出判断性的表述,并能简单说明理由。
3 、培养表达能力和逻辑推理的能力。
教学重点:
1、能对一些事情的可能性做出正确判断,并恰当的表达出来。
2、培养学生简单的逻辑推理能力和表达自己思考过程的能力。
教学过程:
一、 转硬币
1、 印有一元的这面是正面,印有国徽的这面是反面。(转硬币) 猜是正面朝上还是反面朝上。
2、 先猜是正面朝上还是反面朝上,再转硬币。
总结:也就是说在硬币转动之前,我们只能猜测,转动之后可能是正面朝上,也可能是反面朝上。这就是一种可能性。(板书:可能性)
二、 摸棋
1、 把红棋全部放入一个盒中。请问在这个盒子中会摸出什么颜色的棋?
2、 那如果再请同学摸会是什么颜色的?
3、 把三种颜色的棋放到盒中,这次还一定会摸出红棋吗?猜在这个盒子中会摸出什么颜色的棋?学生实际摸摸看。
4、 总结:在这个盒子中装有三种颜色的棋。摸的时候,可能摸出一个红棋,可能摸出一个黄棋,也可能摸出一个绿棋。我们只能用可能描述这件事情。
5、 请问在这个盒子中摸到紫棋吗?(因为没有紫色的棋,所以不可能摸到紫色的棋)。
6、 小精灵带来三个杯子。提出三个问题。
三、 书上例2。
要求:如果认为某件事情是一定会发生的,就在方框里画勾,可能发生的就在方框里画圆圈,认为不可能发生的就在方框里画叉。
四、 巩固练习。
书后练习题,小卷,游戏。