高二年级下册数学月考试卷
高二年级下册数学月考试卷(最新)
高二年级是承上启下的一年,是成绩分化的分水岭,成绩往往形成两极分化:行则扶摇直上,不行则每况愈下。下面小编为大家带来高二年级下册数学月考试卷,欢迎大家参考阅读,希望能够帮助到大家!
高二年级下册数学月考试卷
第Ⅰ卷
一、选择题(本大题共10个小题,每小题5分,共50分)
1.设l、m、n均为直线,其中m、n在平面α内,则“l⊥α”是“l⊥m且l⊥n”的 ( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
2.已知直线m、n和平面α、β满足m⊥n,m⊥α,α⊥β,则 ( )
A.n⊥β B.n∥β,或n⊂β
C.n⊥α D.n∥α,或n⊂α
3..若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中 ( )
A.不一定存在与a平行的直线 B.只有两条与a平行的直线
C.存在无数条与a平行的直线 D.存在与a平行的直线
4.一个平面四边形的斜二测画法的直观图是一个边长为a的正方形,则原平面四边形的面积等于( )
A.a2 B.2a2 C.a2 D.a2
5.如图,若一个空间几何体的三视图中,正视图和侧视图都是直角三角形,其直角边均为1,则该几何体的体积为( )
A. B. C. D.1
6.一个三棱锥,如果它的底面是直角三角形,那么它的三个侧面 ( )
A.必定都不是直角三角形 B.至多有一个直角三角形
C.至多有两个直角三角形 D.可能都是直角三角形
7.如右图所示,正方体ABCD¬A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是( )
A.AC⊥BE
B.EF∥平面ABCD
C.三棱锥A¬BEF的体积为定值
D.△AEF的面积与△BEF的面积相等
8.已知矩形ABCD的面积为8,当矩形ABCD周长最小时,沿对角线AC把△ACD折起,则三棱锥D-ABC的外接球表面积等于 ( )
A.8π B.16π
C.48π D.不确定的实数
9.已知A、B、C、D为同一球面上的四点,且连接每点间的线段长都等于2,则球心O到平面BCD的距离等于 ( )
A. B. C. D.
10.三棱锥P-ABC的高PO=8,AC=BC=3,∠ACB=30°,M、N 分别在BC和PO上,且CM=x,PN=2CM,则下面四个图象中大致描绘了三棱锥N-AMC的体积V与x变化关系(x∈(0,3))是 ( )
第Ⅱ卷
二、填空题(本大题共5小题,每小题5分,共25分)
11.设长方体的长、宽、高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为 。
12. 在中, ,AB=8, ,PC平面ABC,PC=4,M是AB上一个动点,则PM的最小值为 .
13.长方体中,,则一只小虫从A点沿长方体的表面爬到点的最短距离是 。
14.在棱长为1的正方体AC1中,E为AB的中点,点P为侧面BB1C1C内一动点(含边界),若动点P始终满足PE⊥BD1,则动点P的轨迹的长度为________.
15. 四面体ABCD中,有以下命题:
①若AC⊥BD,AB⊥CD,则AD⊥BC;
②若E、F、G分别是BC,AB,CD的中点,则∠EFG的大小等于异面直线AC与BD所成角的大小;
③若点O是四面体ABCD外接球的球心,则O在面ABD上的射影是△ABD的外心;
④若四个面是全等的三角形,则ABCD为正四面体.
其中正确命题序号是 .
三、解答题:本大题共6个小题,共75分。解答应写出文字说明、证明过程或演算步骤。
16.如图,在直三棱柱ABC-A1B1C1中,AC=BC,点D是AB的中点。
(1)求证:BC1//平面CA1D;
(2)求证:平面CA1D⊥平面AA1B1B。
17. 如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB//DC,ΔPAD是等边三角形,已知BD=2AD=8,AB=2DC=4。
(1)设M是PC上的一点,证明:平面MBD⊥平面PAD;(2)求四棱锥P-ABCD的体积。
18.在直三棱柱中,,,且异面直线与 所成的角等于,设.
(Ⅰ)求的值;
(Ⅱ)求平面与平面所成的锐二面角的大小.
19.如图所示,已知PA⊥⊙O所在平面,AB是⊙O的直径,点C是⊙O上任意一点,过A作AE⊥PC于
点E,AF⊥PB于点F,求证:
(1)AE⊥平面PBC;
(2)平面PAC⊥平面PBC;
(3)PB⊥EF.
20.如图所示,四棱锥P-ABCD中,底面ABCD是∠DAB=60°的菱形,侧面PAD为正三角形,其所在
平面垂直于底面ABCD.
(1)求证:AD⊥PB.
(2)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD?并证明你的结论.
21.三棱锥P-ABC中,PC、AC、BC两两垂直,BC=PC=1,AC=2,E、F、G分别是AB、AC、AP的中点。
(1)证明:平面GFE//平面PCB;
(2)求二面角B-AP-C的正切值;
(3)求直线PF与平面PAB所成角的正弦值。
1~10 ADABA DDBBA
11~15 6πa2 2 ①③
16.解答:(1)连接AC1交A1C于E,连接DE,∵AA1C1C为矩形,则E为AC1的中点。
又CD平面CA1D,∴平面CA1D⊥平面平面AA1B1B。
又ΔPAD是边长为4的等边三角形,∴PO=。
18.解:(1),
就是异面直线与所成的角,
即,……(2分)
连接,又,则
为等边三角形,……………………………4分
由,,
;………5分
(2)取的中点,连接,过作于,
连接,,平面
又,所以平面,即,
所以就是平面与平面所成的锐二面角的平面角。…………7分在中,,,,
,…………………………11分
因此平面与平面所成的锐二面角的大小为。…………12分
说明:取的中点,连接,…………同样给分(也给12分)
19证明:(1)因为AB是⊙O的直径,
所以∠ACB=90°,即AC⊥BC.
又因为PA⊥⊙O所在平面,即PA⊥平面ABC.
又BC⊂平面ABC,所以BC⊥PA.
又因为AC∩PA=A,所以BC⊥平面PAC.
因为AE⊂平面PAC,所以BC⊥AE.
又已知AE⊥PC,PC∩BC=C,
所以AE⊥平面PBC.
(2)因为AE⊥平面PBC,且AE⊂平面PAC,
所以平面PAC⊥平面PBC.
(3)因为AE⊥平面PBC,且PB⊂平面PBC,
所以AE⊥PB.
又AF⊥PB于点F,且AF∩AE=A,
所以PB⊥平面AEF.
又因为EF⊂平面AEF,所以PB⊥EF.
解析:(1)方法一,如图,取AD中点G,连接PG,BG,BD.
∵△PAD为等边三角形,∴PG⊥AD,
又∵平面PAD⊥平面ABCD,∴PG⊥平面ABCD.
在△ABD中,∠A=60°,AD=AB,∴△ABD为等边三角形,∴BG⊥AD,
∴AD⊥平面PBG,∴AD⊥PB.
方法二,如图,取AD中点G
∵△PAD为正三角形,∴PG⊥AD
又易知△ABD为正三角形
∴AD⊥BG.
又BG,PG为平面PBG内的两条相交直线,
∴AD⊥平面PBG.
∴AD⊥PB.
(2)连接CG与DE相交于H点,
在△PGC中作HF∥PG,交PC于F点,
∴FH⊥平面ABCD,
∴平面DHF⊥平面ABCD,
∵H是CG的中点,∴F是PC的中点,
∴在PC上存在一点F,即为PC的中点,使得平面DEF⊥平面ABCD.
21.解答:(1)因为E、F、G分别是AB、AC、AP的中点,所以EF//BC,GF//CP。因为EF,GF平面PCB,所以EF//平面PCB,GF//平面PCB。又EF∩GF=F,所以平面GFE//平面PCB。
(2)过点C在平面PAC内作CH⊥PA,垂足为H,连接HB。因为BC⊥PC,BC⊥AC,且PC∩AC=C,所以BC⊥平面PAC,所以HB⊥PA,所以∠BHC是二面角B-AP-C的平面角。依条件容易求出CH=,所以tan∠BHC=,所以二面角B-AP-C的正切值是。
(3)如图,设PB的中点为K,连接KC,AK,因为ΔPCB为等腰直角三角形,所以KC⊥PB;又AC⊥PC,AC⊥BC,且PC∩BC=C,所以AC⊥平面PCB,所以AK⊥PB,又因为AK∩KC=K,所以PB⊥平面AKC;又PB平面PAB,所以平面AKC⊥平面PAB。在平面AKC内,过点F作FM⊥AK,垂足为M。因为平面AKC⊥平面PAB,所以FM⊥平面PAB,连接PM,则∠MPF是直线PF与平面PAB所成的角。容易求出PF=,FM=,所以sin∠MPF==.即直线PF与平面PAB所成的角的正弦值是
学数学的小方法
有良好的学习兴趣,试着去培养数学得兴趣,久而久之,你就会发现数学并不是那么得难,试着多看看有关数学的动漫以及书本,都可以培养你对数学的兴趣。
课前复习,试着看一看书上的原话,没看懂的地方用记号笔画上,等上课的时候认真听课,把没听懂的地方听懂,也可以举手问老师,老师会为你讲解。
重视对概念的理解,不要去把那些能理解的话死记硬背下来,理解就行,实在不行就举例子,如:因为正数大于0,负数小于0,所以正数大于负数。一步步去把它推导出来,当然,基础还是要背的,其他理解了就行。
强大的空间想象力,学习几何图形都需要强大的空间想象力,而培养空间想象力的方法就是:1.善于画图,多画图,2.用教学器具培养你的观察想象力,3.如第一个,学,练习,画,有助于想象力的培养。4.自己多做实验,使抽象化的物体变的立体起来。
找一个学习超好,班里前3的人作为“敌人”,试着把他作为你的仇人,想想自己为什么超不过他,为什么学习没他强,试着激怒自己,并努力超过他,有时候,成功是需要敌人的帮助的。
正确面对事实,假如你在一次考试中考差了,不要灰心,多想想自己为什么会错在那个地方,做好考后一百分,这样后,把错题写在错题本上,并把方法和错题答法写在上面,有助于你的下一次考试成绩提高,用名人的一句话来说:没有失败,何有成功?以及爱迪生说的:失败乃成功之母。考差的时候多想想这些话,鼓励自己。
课内认真听讲,课后努力复习。上课要跟着老师思路来,老师讲哪里你看哪里,不懂下课就去问,上课积极举手,养成听课好习惯,下课休息时光去上个厕所就回来,趴在课桌上想想老师讲过的内容,脑内放电影,提高效率。
多做题,养成良好习惯。想要学好数学,多做题是难免的,当你攻克完一道题以后,不要急着去做下一题,试着用其他办法,看能不能做出这道题,做不出,要积极询问老师,老师会为你讲解,你只需要把方法记住,套路记住就行了。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
学数学必须遵循的规律
01
第四个原则:学习数学必须遵循从具象到形象再到抽象的规律。
数学,本是源自生活,为了解决具体的问题而生。可以说,一点也不神秘,更不会深奥。为什么我们学起来又会那么困难?
原因在于我们学习数学的方法是错误的,我们没有按照大脑工作的习惯来学习,没有遵循从具象到形象再到抽象的规律,太急功近利了,使得这么一门本来很具体的学科变得很晦涩难懂。
02
大脑分左右脑,左脑负责逻辑思维,右脑负责图像记忆。人类学东西,一般会从右脑开始,先有个大概的形象,才能进一步通过左脑去思考。可以说,右脑在很多方面的效率是优于左脑的,这是长期进化的结果。
打个比方,如果我们看见一只老虎,不是赶紧跑,而是先在脑子里思考一番,看看有没有危险,那么,我们很快就会一命呜呼了。如果用右脑来处理则简单多了,一看见老虎这个形象,身体立刻反应,起身就逃。正是这种本能且未经思考的快速反应才使得人类可以在恶劣的环境中得以自保,繁衍生息。
左脑在什么时候会更有效率?在处理更复杂的环境下,左脑更有效率。左脑可以根据以往经验的分析、判断,从而辨析每一种情况的真实性,并作出对应的反应。还拿看见老虎打比方,看见老虎就跑,这是右脑的工作,可是,如果一思考,老虎此时正被关在动物园里的玻璃房,很安全,那还用跑吗?在这里,左脑发挥作用了,进行了逻辑思考。
03
无论是左脑还是右脑,都有赖于记忆。就像电脑在正常工作之前,需要输入程序一样,人的大脑要工作,也需要输入记忆。大脑都是根据记忆来加工、处理各种情况的,为什么记忆力比较强的人,往往智商也比较高,就是这个道理。
左脑的记忆,是抽象的,右脑的记忆,是形象的。抽象记忆必须建立在形象记忆的基础之上,是对形象记忆的归纳、总结,形成结论。人类害怕老虎,是因为看见过很多老虎吃人的事情,老虎这种形象就代表了危险,右脑深深的记忆了这种危险,以后一看到老虎,跑了再说,保命要紧。后面才总结,不是什么情况看见老虎都需要跑,比如在动物园就不用,如此,就建立了抽象的思维。
右脑的记忆,效率更高,左脑的记忆,效率更低。右脑通过图像和感受记忆,直截了当,直接输入。左脑还需要通过文字和符号,经过一番处理,才能记住一个东西,相当于拐了一个弯。
04
符合道的学习,都是从具象、形象到抽象,而不是相反。
传统的数学学习方法,都是从阿拉伯数字0-10开始学起,而后再学加减乘除四则运算,后面又学代数、微积分、几何、数列、概率、统计等。可以说,都是在抽象思维上由浅入深。我们拿着这种方式学来的数学,再去解决现实的问题,却往往束手无策,这就是所谓的高分低能现象。
这种现象,在英语的学习中也经常出现。我们学英语,往往从26个英文字母开始,再记单词、拼读、语法等,最后才去使用。这样学习,往往导致哑巴英语。这也是因为一开始就搞抽象的学习,违反了学习之道。
数学本来是一种生活学科,具有天然的具象性,学起来应该会很简单才是。只是因为我们入手处错了,从抽象入手,才造成如此晦涩难懂。
05
所谓的具象,就是具体的东西;所谓的形象,就是用图形描绘具体的东西;所谓的抽象,就是用符合或者文字描写具体的东西。从思维的角度来说,抽象是最高级的思维;从效率上来说,形象是最有效的描述;从学习的角度来说,具象是最有效的学习方式。
举个简单的例子,如果我们要给别人描述一个梨。拿出一个梨,放在他面前,当然是最形象的,但是,不如画一个梨告诉他来得有效率。但是,如果要搞清楚梨是怎么回事,拿一个梨来解剖一下、品尝一下,这是最有效的学习方式。如果需要进一步的对这个梨为什么会这么甜进行一番探究,那就需要用到抽象的思维了。
学习数学,也需要从具象到形象再到抽象。我们可以从一些具体的东西入手,比如就通过梨入手,在这个基础上进行加减乘除的训练,再逐步过渡到图形上的运算,最后再用抽象的数字来运算。
这样做的好处有三个:第一,孩子会对数学产生兴趣,因为这是具象化的生活问题;第二,学习的效率更高,具象和形象的处理,都由右脑负责,右脑是出名的快,长此以往,孩子的运算能力会很强;第三,基础扎实。虽然看起来具象化的学习相比抽象化的学习刚开始会显得慢一点,但这是数学的基础,基础打牢了,抽象的学习就不会没有根。
06
西方的数学学习,大概都遵循了从具象到形象再到抽象的规律,所以,虽然他们的孩子在小学、初中阶段的抽象化数学程度比较低,但胜在基础扎实。在高中、大学,这些孩子的数学潜力逐渐的发挥出来,后来居上,往往可以赶超中国的学生。若再考虑以后,中国的学生就更不是他们的对手了。