小学五年级数学下册课件
推荐文章
小学五年级数学下册课件5篇
数学教案对于老师是很重要的。学习可以说很枯燥,记公式做题,做大量的类型题。这时候,如果教师有一份明确的说课稿,将会大大提升教学效率,下面小编给大家带来关于小学五年级数学下册课件,希望会对大家的工作与学习有所帮助。
小学五年级数学下册课件(篇1)
教学内容:观察物体
教学目标:
1.让学生经历观察的过程,认识到从不同的位置观察物体,所看到的形状是不同的。能辨认从正面、左面、上面观察到的简单物体的形状。
2.培养学生从不同角度观察,分析事物的能力。
3.培养学生构建简单的空间想象力。
重点:帮助学生构建初步的空间想象力。
难点:帮助学生构建初步的空间想象力。
教学过程:
一、谜语导入
请同学们猜谜语:“左一片、右一片,摸得着,看不见,是什么呢?”(耳朵)为什么能看见别人的耳朵,却看不见自己的耳朵呢?因为我们观察的角度不一样,那么今天我们就一起来进一步研究观察物体(板书)
二、合作探究
(一)整体观察
1.教师将一个对面涂有相同颜色的长方体举起静止不动,叫学生观察并提问:
你观察到的正方体是什么样的?
在你的位置上观察,你看到了哪几个面?
2.学生汇报交流。
学生自由走动,观察。汇报交流。
3.解释应用
教师出示两个正方体的立体图,一个有虚线,另一个没有。
提问:谁能用刚学到的知识解释一下正方体为什么这样画?
学生解释说明。
(二)分别从三个面进行观察(出示例1)
1.教师提问:我们分别从几个不同的方向去观察这个图形,看看它的正面、左面以及上面分别是什么形状的图形,把它们分别划出来。
学生离开座位自由观察。
2.小组之间相互交流,然后全班交流,学生以组为单位在投影以上展示交流。
总结学生的发言:从不同的方向观察,所看到的形状是不一样的。
三、拓展应用
1.做教科书例2
2.智力游戏:两个同学为一组做游戏,一个同学画,另一个同学猜,负责猜的同学要想办法通过你提问的问题确定这个物体是什么,猜完后,在把物体拿出来验证一下,看是否猜对了。
学生玩游戏,教师指导。
四、总结
本节课你学会了什么?
五、作业布置
兴趣探索,根据以下几幅图找出1的对面是几,2的对面是几,3的对面是几。
1.不同角度观察一个物体,看到的面都是两个或三个相邻的面,不可能一次看到长方体或正方体相对的面。
2.从一个面看到物体的形状,可以有多种不同的摆放方式。
3.知道从两个面看到的物体的形状,可以确定小立方体的个数范围。
小学五年级数学下册课件(篇2)
教学要求
①使学生认识分组整理和编制统计表的意义;
②初步学会分组整理原始数据的方法;
③学会填写简单的统计表。
教学重点
分组整理原始数据的方法。
教学用具
放大例2的两张统计表。
教学过程
一、创设情境
1.我们复习一下已学过的简单数据整理和一些统计表的知识。
2.下面是某班数学兴趣小组中女同学测量身高的统计表。
姓名:
平均:
身高:(厘米)
独立之后思考回答问题:
①如何求出这组女同学的平均身高?
②这组女同学的身高有什么特点?
③的女同学比最矮的女同学高多少厘米?
④如果这张表上的女同学很多,又不能清楚地看出她们身高的分布状况,怎么办?这节课我们学习把原始数据按照数量的大小划分成几组,再制成统计表。
二、探索研究
1.分组整理原始数据的方法。
(1)教师出示记录单,学生独立思考
①谁?身高多少?
②谁最矮?身高多少?
③身高大多在什么范围?(很难看出,要分组整理一下)
(2)小组讨论:
怎样分组整理?说说你的设想。
(3)分组整理的具体做法(对照着做):
①找出原始数据的范围(学生找出记录单中原始数据的范围)。130~154厘米。
②把数据的范围划分成几组并按照一定的顺序排列制成表。(按5厘米一组可分为五组,再分成“身高”和“人数”两栏制好表并出示例2的统计表)
③统计各组中的数目,填写统计表(用画正字的方法收集数据并让学生填好统计表)。
(4)看书回答问题:
①看教材第3页,回答下面的三个问题。
②看教材第4页,“想一想”该怎么办?(说明记录单上的原始数据的重要性,不能随便丢掉)
三、课堂实践
1.调查本班学号1~32的学生的体重,并将调查结果按分组的方法进行整理。
2.课堂作业
做练习一的第4、5题。
课后反思:
收集信息、整理信息是现代化社会对人的最基本要求,是每一个人必备的技能之一。而让学生感受体验到收集和整理数据的意义,是激发学生学习内驱内的方法。
小学五年级数学下册课件(篇3)
教学目标:
1、结合具体情境,,探索并理解分数乘整数的意义;
2、探索并掌握分数乘整数的计算方法,并能正确计算;
3、能正确运用“先约分再计算”的方法进行计算。
教学重点:
1、结合具体情境,,探索并理解分数乘整数的意义;
2、探索并掌握分数乘整数的计算方法,并能正确计算;
教学难点:
能正确运用“先约分再计算”的方法进行计算。
教学过程:
一、探索分数乘整数的意义和计算方法。
1、出示情境:剪一个这样的图案要用一张彩纸的1/5,剪3个这样的图案需要多少张彩纸?
2、请大家想办法解决问题,先自己想一想,没有思路的同学可以同桌交流,也可以看一看书上是怎么解决的。
3、组织全班交流。师生一起来分享交流过程。对学生提出的想法,师可以这样提问:你列的这个算式表示什么意义呢?对这个算法,你是怎么理解的,别的同学还有什么问题吗?教师在学生讨论的过程中,把加法的板书和乘法的板书有机的结合起来。并让学生理解求几个相同分数的和用乘法计算。
4、练一练:教科书第2页“涂一涂,算一算”。学生独立完成后,让学生说说自己的思路。讨论:你能用自己的语言说一说整数乘分数的计算方法吗?小结:分数与整数想乘,用分数的分子和整数的乘积作分子,分母不变。练习:教科书“试一试”第1、2题。
5、探讨“先约分再计算”的方法。
出示6×5/9。让学生独立完成,指名板演。学生可能出现两种计算方法,如果没有方法二,教师可指导学生看书得到。教师引导学生比较两种算法,得出“先约分再计算”的方法比较简便。
练习:
(1)教科书“练一练”第1题。
(2)计算
二、巩固练习
1、教科书第4页“练一练”第2、3、4、题。学生先独立完成,指名板演,在集体讲评。
2、教科书第4页“练一练”第5题。让学生把计算结果写在课本上,再仔细观察,看看发现了什么?
3、教科书第4页“数学故事”。先让学生说说,你从每幅图中得到了哪些信息?如何解决图中提出的问题。
小学五年级数学下册课件(篇4)
教学目标:
1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
2、知识目标:学习整数乘以分数的计算方法,让学生亲自经历探究整数乘以分数的计算原理,学生能够熟练准确的计算整数乘以分数。
3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
重点难点:
学生能够熟练的计算整数乘以分数
教学方法:
师生共同归纳和推理
教学准备:
教学参考书、教科书
教学过程:
一、复习导入
教师出示教学板书,请学生计算下列分数加减运算题。
教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?
学生寻找完毕,纷纷举手准备回答问题。
教师提问学生回答问题。(先通分,再进行分子与分子相加减;分母不变…)并注意更正学生的错误和表扬回答问题的同学。
二、讲授新课
同学们我们学习一种新的运算:分数乘法,让学生想一想什么是分数乘法?
学生同桌之间讨论,教师提问学生回答问题。
教师板书例题,让学生想一想如何计算?
学生列出算式3×=,学生同桌之间相互讨论,如何计算整数乘以分数?
教师提问学生说一说自己是怎样计算的?
(学生1:3×==;学生2:3×====……)
教师和学生总结整数乘以分数的计算方法,整数乘以分数,只把整数乘以分子,分母不变。)
三、巩固练习
做课本2页涂一涂,算一算,2个的和是多少?
让学生熟练计算,教师及时纠正学生错误的计算方法。
做课本试一试1、2题。
四、课堂小结
同学们,这一节课你学到了哪些知识?(提问学生回答)
板书设计:
分数乘法
分数乘以整数的计算方法:整数乘以分数,只把整数乘以分子,分母不变。
小学五年级数学下册课件(篇5)
教学目标
1.结合具体情境,在操作活动中,探索并理解分数乘整数的意义。
2.探索并掌握分数乘整数的计算方法,能正确计算。
3.能解决简单的分数乘整数的实际问题,体会数学与生活的密切联系。
教学重点
会用分数乘整数的计算法则真确进行计算。
教学难点
分析和解决分数乘整数的实际问题。
教师指导与教学过程
学生学习活动过程
设计意图
一,复习整数乘法的意义
1.什么叫整数乘法?就是求几个相同加数的和的简便运算。
2.出示题目,学生进行计算
(1)6+6+6=6×3
二、新授:
1、出示题卡
1个图案占一张彩纸的1/5,3个图案占这张彩纸的几分之几?
2、引导学生用涂一涂加法计算,乘法计算三种分式来解决问题。
学生回忆整数乘法,并回答什么叫整数乘法。
1、学生仔细阅读题卡,理解题意否,列式计算。
2、学生交流各自计算的方法。
3、全班进行交流。
+、+、=、=
×、=、+、+、=、=
通过复习整数乘法的意义,过渡到分数乘法的意义,学习易于理解。
在交流各自的语言地理学的过程中,让学生体会分数乘整数的意义与整数乘法的意义是相同的,即求几个相同加数的和的简便运算。
教师指导与教学过程
学生学习活动过程
设计意图
三、涂一涂,算一算
(1)2个3/7的和是多少?
(2)3个5/16的和是多少?
四、练习巩固
1、5个3/8是多少?
2、4个2/17是多少?
3、6个3/25是多少?
学生打开教科书,选涂一涂,再列式计算。
学生审题后,涂一涂,再列式计算。
×2=
全班交流
5/16×3=5×3/16
=15/16
学生独立完成在作业本上
帮助学生进一步体会分数乘整数的定义,同时还可以帮助学生寸步体会“分数乘整数,分子和整数相乘,分母不变”的道理。