九年级上册数学的教案
推荐文章
九年级上册数学的教案精选7篇
好的数学教学教案很有意义的。一个完整的说课主要包括以下几个方面内容,说教学目标、说教学内容、 还要注意指出教学内容的重点、难点和关键点。下面小编给大家带来关于九年级上册数学的教案,希望会对大家的工作与学习有所帮助。
九年级上册数学的教案(篇1)
1.记叙文阅读
(1)阅读课内记叙文,课外一般文艺读物,能整体感知文章内容和记叙的特点,分析记叙的要素、了解人称、记叙的顺序。
(2)阅读散文能理解其深刻含义,体会作品思想感情;把握文章的线索,理解文章选材组材特点;体会文章中优美精辟的语句。
(3)能运用记叙文的知识划分文章段落、层次、概括段意层次意,明确详写、略写与表达中心的关系,根据各部分之间的内在联系归纳中心意思。
(4)能在整体感知文章内容的基础上找出重点段落、关键的词语和句子,并加以分析体会。
(5)能分辨记叙、说明、议论、描写、抒情几种不同的表达方式,并分析其表达作用。
2.说明文阅读
(1)了解说明文的主要表达方式是说明,能分辨文中说明与叙述、描写、抒情、议论等表达其它表达方式,并领会它们各自在说明文中的作用。
(2)了解说明文的分类,能依据说明对象将说明文分为事物说明文和事理说明文两大类。
(3)理解说明的内容,能正确判断说明的对象及其特征或本质,准确地概括中心意思。
(4)能根据不同的说明对象及其特征或本质理清说明的顺序,主要掌握空间顺序、时间顺序和逻辑顺序(从现象到本质、从特点到用途、从原因到结果、从整体到局部、从主要到次要、从概括到具体等)三种,并能领会说明顺序的综合运用。
(5)了解说明文总分、并列、层进等结构层次,并能结合文章或段落进行具体分析。
(6)了解说明的方法,主要了解下定义、分类别、举例子、作比较、打比方、列数字、;画图表、引资料等说明方法,能从文章中找出这些方法并简要说明它们的作用。
3.议论文阅读
(1)了解记叙和议论的区别,能分辨文中记叙性的语句和议论性的语句;能分辨以记叙为主和以议论为主的段落;进一步理解记叙是议论的基础,有的段落则是议论引出记叙。
(2)掌握论点知识,能从文中找出或概括论点;理解中心论点与分论点之间的关系。
(3)会分辨事实论据和道理论据,并了解它们在阐明观点方面的作用。
(4)理解例证、引证、对比论证、比喻论证等论证方法及其在阐明观点上的作用。
(5)了解议论文的结构:引论、本论和结论以及提出问题、分析问题、解决问题。
(6)领会议论文语言的严密性和感情 色彩。
(7)了解立论、驳论两种论证方式,了解常见的反驳方法。
4.文言文阅读
(1)读准字音,读好停顿。
(2)按照教材要求背诵重点篇章。
(3)了解课文的基本内容。
(4)能够回答课后练习中有关课文内容方面的问题。
(5)了解文章的主要写作方法。
九年级上册数学的教案(篇2)
1.比喻:根据事物的相似点,用具体的、浅显、熟知的事物来说明抽象的、深奥的、生疏的事物,即打比方。作用:能将表达的内容说得生动具体形象,给人以鲜明深刻的印象,用浅显常见的事物对深奥生疏事物解说、帮助人深入理解。比喻的三种类型:明喻、暗喻和借喻。
不要把有“像”、“好像”的句子都看成比喻句。多数情况下,‘像“、“好象”、“仿佛”表示比喻,但是要注意以下几种情况不是比喻:
(1)表示比较的。如:他长得很像他哥哥。
(2)表示推测、揣度的。如:他刚才好像出去了。
(3)表示例举。如:本次考试很多同学的进步很大,像__等等。
(4)表示想象。如:闭了眼,树上仿佛已经满是桃儿、杏儿、梨儿。
2.拟人:把物当作人来写,赋予物以人的言行或思想感情,用描写人的词来描写物。作用:使具体事物人格化,语言生动形象。
3.夸张:对事物的性质、特征等故意地夸张或缩小。作用:揭示事物本质,烘托气氛,加强渲染力,引起联想效果。
4.排比:把结构相同或相似、语气一致、意思相关联的三个以上的句子或成分排列在一起。作用:增强语言气势,加强表达效果。
5.对偶:字数相等,结构形式相同,意义对称的一对短语或句子,表达两个相对或相近的意思。作用:整齐匀称,节奏感强,高度概括、易于记忆,有音乐美感。如:墙上芦苇,头重脚轻根底浅;山间竹笋,嘴尖皮厚腹中空。
6.反复:为了强调某个意思,某种感情,有意重复某个词语或句子。反复的种类:连续反复和间隔反复。连续反复中间无其他词语间隔。间隔反复中间有其他的词语。
7.设问:为了引起别人的注意,故意先提出问题,然后自己回答。作用:提醒人们思考,有的为了突出某些内容。
8.反问:无疑无问,用疑问形式表达确定的意思,用肯定形式反问表否定,用否定形式反问表肯定。
9.引用:引用现成的话来提高语言表达效果,分直接引用和间接引用两种。
10.借代:用相关的事物代替所要表达的事物。借代种类:特征代事物、具体代抽象、部分代替整体。
九年级上册数学的教案(篇3)
给加点的字注音:
嘶哑(sī)绽出(zhàn)锦幛(zhànɡ)
径自(jìnɡ)佝偻(ɡōulóu)泄漏(xiè)
禀告(bǐnɡ)斟酒(zhēn)呓语(yì)
阴霾(mái)汹涌(xiōnɡyǒnɡ)憔悴(qiáocuì)
舀出(yǎo)哄笑(hōnɡ)蒲包(pú)
羞怯(qiè)芳馨(xīn)贪婪(lán)
祈祷(qídǎo)回溯(sù)惺忪(xīnɡsōnɡ)
愧疚(kuì)灰烬(jìn)大抵(dǐ)
侍候(shì)笔墨纸砚(yàn)朔风(shuò)
休憩(qì)心魂惊骇(hài)踝骨(huái)
紊乱(wěn)袒露(tǎn)黯然(àn)
打鼾(hān)阔绰(chuò)羼水(chàn)
颓唐(tánɡ)门槛(kǎn)骄奢(shē)
枭鸟(xiāo)旋涡(xuánwō)虬须(qiú)
怜悯(mǐn)凛然(lǐn)荫庇(yìn)
给多音字注音:
夹袄(jiá)嚼碎(jiáo)打折了腿(shé)
行情(hánɡ)涨到十文(zhǎnɡ)血淋淋(xiě)
涨红了脸(zhànɡ)调解(tiáo)模样(mú)
改正词语中的错别字:
峥蝾(嵘)挖崛(掘)槐梧(魁)
洋隘(溢)店记(惦)陷井(阱)
侧隐(恻)篾视(蔑)才狼(豺)
宽怒(恕)溃赠(馈)轶丽(昳)
改正短语中的错别字:
如坐针毯(毡)提心掉胆(吊)不屑置辨(辩)
吹毛求刺(疵)望眼欲串(穿)变化莫侧(测)
淹淹一息(奄奄)出人投地(头)顶礼莫拜(膜)
万恶不郝(赦)忍峻不禁(俊)一气呼成(呵)
重要作家、作品回顾:
(1)《我爱这土地》——艾青——浙江金华人——现代诗人
(2)《乡愁》——余光中——台湾——诗人
(3)《我用残损的手掌》——戴望舒——祖籍南京,生于杭州——诗人
(4)《蒲柳人家》——刘绍棠——北京人——当代作家
(5)《变色龙》——契诃夫——俄 国作家——《装在套子里的人》
(6)《热爱生命》——杰克•伦敦——美国——小说家
(7)《谈生命》——冰心——中国现代作家、散文家
(8)《威尼斯商人》——莎士比亚——英国——戏剧家和诗人
九年级上册数学的教案(篇4)
一、投影
1.投影:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。
2.平行投影:由平行光线形成的投影是平行投影。(光源特别远)
3.中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影。
4.正投影:投影线垂直于投影面产生的投影叫做正投影。物体正投影的形状、大小与它相对于投影面的位置有关。
5.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同。当物体的某个面顶斜于投影面时,这个面的正投影变小。当物体的某个面垂直于投影面时,这个面的正投影成为一条直线。
二、三视图
1.三视图:是观测者从三个不同位置(正面、水平面、侧面)观察同一个空间几何体而画出的图形。三视图就是主视图、俯视图、左视图的总称。另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。
2.主视图:在正面内得到的由前向后观察物体的视图。
3.俯视图:在水平面内得到的由上向下观察物体的视图。
4.左视图:在侧面内得到的由左向右观察物体的视图。
5.三个视图的位置关系:
①主视图在上、俯视图在下、左视图在右;
②主视、俯视表示物体的长,主视、左视表示物体的高,左视、俯视表示物体的宽。
③主视、俯视长对正,主视、左视高平齐,左视、俯视宽相等。
6.画法:看得见的部分的轮廓线画成实线,因被其它部分遮档而看不见的部分的轮廓线画成虚线。
九年级上册数学的教案(篇5)
一、锐角三角函数
1、正弦:在rt△abc中,锐角∠a的对边a与斜边的比叫做∠a的正弦,记作sina,即sina=∠a的对边/斜边=a/c;
2、余弦:在rt△abc中,锐角∠a的邻边b与斜边的比叫做∠a的余弦,记作cosa,即cosa=∠a的邻边/斜边=b/c;
3、正切:在rt△abc中,锐角∠a的对边与邻边的比叫做∠a的正切,记作tana,即tana=∠a的对边/∠a的邻边=a/b。
①tana是一个完整的符号,它表示∠a的正切,记号里习惯省去角的符号“∠”;
②tana没有单位,它表示一个比值,即直角三角形中∠a的对边与邻边的比;
③tana不表示“tan”乘以“a”;
④tana的值越大,梯子越陡,∠a越大;∠a越大,梯子越陡,tana的值越大。
4、余切:定义:在rt△abc中,锐角∠a的邻边与对边的比叫做∠a的余切,记作cota,即cota=∠a的邻边/∠a的对边=b/a;
5、一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。(通常我们称正弦、余弦互为余函数。同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:
若∠a为锐角,则①sina=cos(90°∠a)等等。
6、记住特殊角的三角函数值表0°,30°,45°,60°,90°。
7、当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。0≤sinα≤1,0≤cosα≤1。
九年级上册数学的教案(篇6)
二次函数及其图像
二次函数(quadraticfunction)是指未知数的次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。
一般的,自变量x和因变量y之间存在如下关系:
一般式
y=ax+bx+c(a0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b2)/4a);
顶点式
y=a(x+m)2+k(a0,a、m、k为常数)或y=a(x-h)2+k(a0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;
交点式
y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线];
重要概念:a,b,c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下。a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。
牛顿插值公式(已知三点求函数解析式)
y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3)。由此可引导出交点式的系数a=y1/(x1__x2)(y1为截距)
九年级上册数学的教案(篇7)
旋转
1、旋转的三要素:旋转中心,旋转方向,旋转角。
2、旋转的性质:①对应点到旋转中心的距离相等,②对应点与旋转中心所连线段的夹角等于旋转角,③旋转前、后的图形全等。
关键:找好对应线段、对应角。
3、中心对称:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么这两个图形关于这个点对称或中心对称。
4、中心对称的性质:①关于中心对称的两个图形,对应点所连线段都经过对称中心,而且被对称中心所平分。②关于中心对称的两个图形是全等形。
5、中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。
6、对称点的坐标规律:①关于x轴对称:横坐标不变,纵坐标互为相反数,②关于y轴对称:横坐标互为相反数,纵坐标不变,③关于原点对称:横坐标、纵坐标都互为相反数。