5068教学资源网 > 学习宝典 > 数学 > 数学教研 > 教学设计 > 中学数学教学设计的模板及笔记

中学数学教学设计的模板及笔记

开鹏0分享

中学数学教学设计的模板及笔记5篇

经典数学的课件很有意义的。以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。下面小编给大家带来关于中学数学教学设计的模板及案例,希望会对大家的工作与学习有所帮助。

中学数学教学设计的模板及笔记

中学数学教学设计的模板及笔记(精选篇1)

一、教材分析

(一)本节课在教材中的地位及作用:本节课是中考考纲中规定的必考内容,它对整章节教学起承上启下的作用,学好梯形会有举一反三、以一当十的作用。

(二)课时安排:

两课时。本节课是第一课时,第二课时是梯形的判定及应用

(三)教学目标

1、知识与技能目标:

掌握梯形的有关概念、等腰梯形的性质和五种基本辅助线。

2、过程与方法目标:

⑴使学生在探究梯形相关的概念和等腰梯形的性质的过程中发展学生的说理意识;

⑵在解决等腰梯形的应用问题的过程中,尝试多样化的方法和策略、

3、情感、态度与价值观目标:

让学生们体会数学活动充满着思考与创造的乐趣,体验与同学合作交流的愉悦;

(四)教学重点、难点:

本节课的教学重点分成三个层次:

1、掌握梯形的定义,认识梯形的其他相关概念;

2、熟练应用等腰梯形的性质;

3、通过实际操作研究梯形的基本辅助线作法。

本节课的教学难点确定为:灵活添加辅助线,把梯形转化成平行四边形或三角形。原因是解决梯形问题往往要转化成平行四边形和三角形来处理,经常需要添加辅助线,对于刚刚接触梯形的学生难免会有无从下手的感觉,往往会有题目一讲就明白但自己不会分析解答的情况发生。

为达成以上的教学目标,解决重点、突破难点,我的课堂教学设计的指导思想为:努力实现对传统课堂教学模式的五个突破——以学生主体观念突破教师中心、以学生主体活动突破课堂中心、以学生主体参与突破讲解中心、以学生主体经验突破书本中心、以学生主体能力发展突破考试中心。在这样的理念下,我设计了如下的教法、学法和教学程序:

二、教学方法:

根据《新课标》的要求,立足于学生的生活经验和已有的数学活动经验,本节课我采用“引、动、导、探”教学法,实施“二、四、六”教学模式,即两个探究层次、四个教学环节、六步教学程序。如陶行知先生所说的:在方法上应该是“行”为先,“知”为后。

三、学习方法:

初二的学生已经基本具备了《新课标》中要求的“初步的空间观念”《新课标》指出:有效的数学学习活动不能单纯依赖模仿和记忆。为了充分体现《新课标》的要求,本节课采用“做、思、问、辩、议”的五步学习法、正如波利亚所说的:“学习任何知识的途径,都是自己去发现。”

四、教具、学具准备:

多媒体,小黑板,常用画图、剪纸工具,矩形纸片,平行四边形纸片,信纸

五、教学程序:

共有六步

(一)情境引发

(二)活动探索、研究发现

(三)深化建构

(四)迁移运用

(五)系统概括

(六)布置作业,拓展思维

这六步教学程序在教案中都详细介绍了,我只把教学的主线和总的设计意图说一说。

在前三个环节我都是以剪纸为主线:俗语说:良好的开端是成功的一半所以我先是利用平行四边形纸片剪梯形,然后是利用矩形纸片剪特殊梯形,再利用剪出的等腰梯形研究发现等腰梯形的性质,这样一环扣一环的完成教学目标,并解决本节课的两个重点。这样设计的目的是:如《新课标》中所说的“数学教学是数学活动的教学”所以在设计这节课时我没有一味的照本宣科,而是让学生们在操作中发现,在操作中探究,在操作中升华,借助于优美的课件使课堂真正成为学生的舞台,以自己的行动实践了一句话“教是为了不教”

在第四个环节迁移运用里本着“学以致用”的原则,在这里我设计了“练一练,议一议,试一试,想一想”四个环节。

由学生独立完成,用实物展台展示学生解答过程,集体评价、完善,规范学生的解题过程、并着重解决梯形的辅助线问题,由学生归纳、补充、完善,在黑板的主板面——中间位置逐一列出。

设计意图:解决梯形问题的策略很多,在这里我没有单纯的就辅助线来研究辅助线而是把知识点蕴含在习题中,再归纳总结。华应龙老师说:的课堂,本质上是一种“有助于启动和启发思维的酵母”。我就想通过这样做使学生的思维自然而然的过渡到本节课的难点上,这样设计培养了学生的发散思维,通过一题解决一类问题、顺利的突破了本节课的难点

在第五个环节系统概括里我没有采用传统的学生或老师小结的方式而是以探究课题的方式出现从下面三个题目中任选一个作为探究课题:

1、平行四边形和梯形的区别和联系;

2、我看等腰梯形的特殊性;

3、解决梯形的常用方法。

以小组为单位共同完成,将探究结果以文章的形式呈现。我这样设计的目的是这三个题目就是本节课的主要内容无论学生选择哪一个,在浏览、思考、准备、生成的过程中即达到了概括的目的又发展了学生的能力。

在第六个环节在作业内容的设计上,我改变了传统的以巩固知识为目的的单一的作业形式,留的两项作业都是考察学生能力的

1、拓展性作业:在平行四边形(矩形)纸片上画一条裁剪直线,将该纸片裁剪成两部分,并把这两部分重新拼成如下图形:

(1)等腰梯形

(2)直角梯形(要求:所拼成的图形互不重叠且不留空隙)

2、发挥想象,以梯形为基础图案设计通钢三中第__届运动会的会徽

我这样设计的目的是:即是学生乐于接受的又突出体现实践性、探究性、发展性,使学生所学知识得以升华,在设计会徽时还可以适当的对学生进行情感教育,同时为下节课的学习埋下伏笔、

六、有四点说明:

1、板书设计分为三个部分:(左)梯形定义和性质;(中)梯形五种辅助线的作法及图形;(右)大屏幕。这堂课的板书力求做到形象直观,适当运用彩粉笔,突出重难点,便于学生理解,起到深化主题,回顾中心的作用。

2、时间的大体安排:情境引发大约3分钟,活动探索、研究发现,大约15分钟,深化建构约8分钟,迁移运用大约13分钟,系统概括及布置作业6分钟。

3、教学反思需要课后填写4、整个设计要突出体现的特色:让学生动手操作,让学生实践验证,让学生自己设计,学生能说的我不说,学生能做到的我不做,努力做到“教是因为需要教”。

七、教学预测:

本节课内容较多尤其是辅助线的几种作法在一课时内完成,有部分学生在探究问题的深度和广度上可能会有所欠缺。以上是我基于《梯形》在教材中的地位和初二学生的认知特点在新课程理念指导下作出的教学设计,敬请各位专家批评指正。

中学数学教学设计的模板及笔记(精选篇2)

一、教材分析:

(一)教材的地位及作用:

梯形是人们最为熟悉的几何图形之一,在生活中有着极为广泛的应用。在小学阶段学生对梯形已经有了初步的认识、本节课再次将学生带入梯形的殿堂,进一步探究梯形的相关概念、等腰梯形的性质以及解决梯形问题的策略,是四边形知识螺旋发展的一个重要环节、

(二)教学目标;

根据教材的地位及作用,考虑到学生已有的认知结构心理特征,我将本节课的教学目标确定为:

1、知识与技能目标:

(1)掌握梯形的相关概念,了解等腰梯形同一底上的两个内角相等,两条对角线相等的性质。

(2)培养学生初步应用等腰梯形的性质解决问题的能力。

2、过程与方法目标:

(1)使学生经历探究梯形相关的概念,等腰梯形性质的过程。

(2)在解决等腰梯形的应用问题的过程中,尝试多样化的方法和策略。

3、情感、态度与价值观目标:

(1)在简单的操作活动中,发展学生的说理意识和主动探究的习惯,同时培养学生的合作意识和交流能力。

(2)体会探索发现的乐趣,增强学习数学的自信心。

(三)教学重点、难点:

本着课程标准,在钻研教材的基础上,我确定:

1、本节课的教学重点是:探索等腰梯形的性质并能运用它解决一些简单的问题。

2、教学难点:梯形有关计算和推理中的常用策略、

二、教法分析:

针对本节课的特点,采用“创设情境—动手操作—合作交流—知识运用”为主线的教学方法。

三、学法指导:

《数学课程标准纲要》指出:有效的数学学习活动不能单纯依赖模仿和记忆,动手实践、自主探索与合作交流是学习数学的重要方式、为了充分体现《新课标》的要求,本节课采用“动手实践,合作探究”的学习方法。使学生积极参与教学过程,通过合作交流,激发学生的学习兴趣,体验探索的快乐,使学生的主体地位得到充分的发挥、

四、教学过程:

(一)创设情境,导入课题。

让学生拿出准备好的平行四边形纸片和剪刀,只剪一刀,保证留下的纸片是是四边形,那么留下的四边形是什么图形?学生动手操作,我参与到学生活动中,及时搜集学生可能出现的情况。

学生容易发现,当所剪的边与相对的边平行时,得到的是平行四边形,那么不平行时,得到的是什么图形呢?由此导入课题。

设计意图:从学生刚刚研究过的的平行四边形入手,让学生既复习运用了平行四边形的相关知识,又有利于加强对比,顺利过渡到梯形的研究。

(二)动手操作,合作探究。

探究一、梯形的相关概念。

由剪纸的体验,学生很容易概括出梯形的定义,进一步引导学生认识梯形的相关概念。强调:上下底的区分是根据长度,而不是根据其位置。

紧接着让学生举出生活中梯形的实例,学生的举例可能会拘泥于校园,教室,家里的物品,这时我利用课件向学生展示墨西哥的金字塔,年上海世博会中国会馆的的图片,让学生发现图片中的梯形,感受梯形的美。接着,利用多媒体展示一组图片,让学生进一步感受生活中的梯形。设计意图:让学生学会用数学的眼光看世界,体会数学与现实生活的联系、为了加深学生学生对梯形高的意义的理解,我设计了“画一画”:在一张有平行线条的纸上作一个梯形ABCD,使AD∥BC,并作出它的一条高。

待学生画好后,分别指出梯形的上底、下底和高。设计意图:让学生体会梯形高的作法,理解梯形高的意义以及梯形的高有无数条。学生知道了什么是梯形,那么梯形与平行四边形有什么异同?学生小组讨论交流后汇报,借助课件的动画效果加以强调。并进一步提出以下问题:

1、梯形是平行四边形吗

2、一组对边平行这组对边不相等的四边形是梯形吗?

设计意图:通过讨论使学生认识到,平行四边形和梯形属于四边形的两个不同分支,探究二、特殊梯形

为得到等腰梯形、直角梯形的定义,我设计了下面的活动:剪一剪:如图,把一张矩形纸片对折后,用剪刀沿斜线剪开,然后将其展开,可得到一个什么图形?

让学生从学具中拿出矩形纸片,按大屏幕的要求完成剪纸,并向大家展示,所得到的是什么图形?剪下的是什么图形?这时我鼓励学生由剪纸过程说说什么样的梯形是等腰梯形,什么样的梯形是直角梯形,结合课件的动画效果给出等腰梯形和直角梯形的定义。

(三)总结反思,纳入系统。

1、通过本节课的学习你得到了哪些新知识?

2、解答关于等腰梯形的问题后,你获得了哪些方法?设计意图:这是一次知识与情感的交流,培养学生自我反馈,自主发展的意识。

(四)布置作业,拓展思维。

学生经过以上四个环节的学习,已经初步掌握了等腰梯形的性质,但学生的能力有待进一步提升,因此作业布置为:

1、基础性作业:课本121面习题4、8节1、2、3题。

2、拓展性作业:在下图所给的平行四边形(矩形)纸片上画一条裁剪直线,将该纸片裁剪成两部分,并把这两部分重新拼成如下图形:

(1)等腰梯形。

(2)直角梯形。

要求:所拼成的图形互不重叠且不留空隙。设计意图:进一步培养学生动手操作能力及独立分析问题解决问题的能力,让学生更好的会学数学,用数学的理念。同时为下节课的学习埋下伏笔。

五、教学评价。

本节课通过设置问题情境、多媒体展示、学生画图、探究,使学生在“做中学”。

学生在实际操作中,经历了自主探究、合作交流的学习方式,既发展了学生的个性潜能,又培养了他们的合作精神,教师始终是活动的组织者、引导者、合作者,学生是以研究者、探索者的角色出现在教学过程中,主体地位得到了充分体现,使教学过程成为一个再发现、再创造的认识过程,培养学生用转化的思想来探索新问题。

中学数学教学设计的模板及笔记(精选篇3)

大家好!很高兴有这样一个机会与大家一起学习、交流,希望大家多多指教!我说课的课题是“合并同类项”,下面进行简单的说课:

一、教材与学情分析:

本节课选自湘教版《数学》七年级上册§2.4节,是学生进入初中阶段,在引入用字母表示数,学习了代数式、多项式以及有理数运算的基础上,对同类项进行合并的探索、研究。合并同类项是本章的一个重点,其法则的应用是一次式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算律的基础之上;在合并同类项过程中,要不断运用数的运算。可以说合并同类项是有理数加减运算的延伸与拓广。因此,这节课是一节承上启下的课。

七年级的学生具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱。所授班级中,已初步形成合作交流、勇于探索的学习风气。

基与上面对教材与学情的分析,结合《新课标》的要求,我确定以下教学目标、教学重点和难点:

教学目标:

知识目标:

1、了解同类项、多项式相等的概念。

2、掌握合并同类项的法则。

能力目标:

1、在具体的情景中,通过观察、比较、交流等活动认识同类项,了解数学分类的思想;并且能在多项式中准确判断出同类项。

2、在具体情景中,通过探究、交流、反思等活动获得合并同类项的法则,体验探求规律的思想方法;并熟练运用法则进行合并同类项的运算,体验化繁为简的数学思想。

情感目标:

1、通过设置具体的问题情境,以小组为单位开展探究、交流等活动,让学生感受合作的愉快与收获。

2、实施开放性教学,让学生获得成功的体验。

3、通过设置不同层次的问题,使不同程度的学生得到不同的发展。

教学重点: 同类项的概念、合并同类项的法则及应用。

教学难点: 正确判断同类项;准确合并同类项。

二、设计思路:

1、 采用“问题情境---建立模型---解释、应用与拓展”的模式展开教学。让学生经历同类项概念和合并同类项法则的形成与应用过程,从而更好地理解知识,掌握其思想方法和应用技能。

2、 引导学生主动地从事观察、猜想、推理、论证、交流与反思等数学活动;鼓励学生自主探索与合作交流,使学生主动地获取知识,积累数学活动经验,学会探索、学会学习。

3、 关注学生的情感与态度,实施开放性教学,让学生获得成功的体验。

三、 教学方法、手段与教学程序:

为了达到教学目标,实现我的设计效果,我采用引导、探究法为主的教学法,应用多媒体课件运用CAI辅助教学。设计以下主要教学流程:

1)创设五个步步深入的问题情境:目的在于引发学生学习的积极性,启发学生的探索欲 望,同时为本课学习做好准备和铺垫。

2)问题探讨:让学生通过自主探索与合作交流认识同类项,了解数学分类的思想;获得合并同类项的法则,体验探求规律的思想方法。同时让学生体验合作的愉快与收获。感受成功的喜悦。

3)火眼金睛与看谁做的又快又准:让学生加深对同类项的认识,加强对合并同类项法则的理解。

4)例题讲解与巩固练习:让学生掌握在多项式中判断出同类项和运用法则进行合并同类项运算的技能,使学生的知识、技能螺旋式上升。

5)课堂小结:通过学生的自我反思,将知识条理化、系统化。

6)拓展延伸与挑战自我:激发学生的学习热情,为他们提供更广泛的发展空间。

我的教学目的能不能实现,设计效果能不能达到,就只能看我接下来上课的情况了!我的说课就简单说到这里,谢谢大家!

中学数学教学设计的模板及笔记(精选篇4)

一、教材分析

(一)地位、作用

本节课是在学生已经学习了直线、射线、线段和角的有关知识的基础上,进一步研究平面内两条直线相交形成4个角的位置和数量关系,为今后学习几何奠定了基础,同时也为证明几何题提供了一个示范作用,本节对于进一步培养学生的识图能力,激发学生的学习兴趣具有推动作用,所以本节课具有很重要的地位和作用。

(二)教学目标

根据学生已经有的知识基础,依据《教学大纲》的要求,确定本节课的教学目标为:

1、知识与技能

(1)理解对顶角和邻补角的概念,能从图中辨别对顶角和邻补角。

(2)掌握“对顶角相等的性质”。

(3)理解对顶角相等的说理过程。

2、过程与方法

经历质疑,猜想,归纳等数学活动,培养学生的观察,转化,说理能力和数学语言规范表达能力。

3、情感态度和价值观

通过小组讨论,培养合作精神,让学生在探索问题的过程中,体验解决问题的方法和乐趣,增强学习兴趣;在解题中感受生活中数学的存在,体验数学中充满着探索和创造。

(三)重点,难点

根据学生已有的知识基础,依据教学大纲的要求,确定本节课的重难点为:

重点:邻补角和对顶角的概念及对顶角相等的性质。

难点:写出规范的推理过程和对对顶角相等的探索。

二、教学方法

在教学中,为了突出重点,突破难点,我采用了直观的教具演示和多媒体。增大了教学的直观性,让学生观察、比较、归纳、总结,使学生经历了从具体到抽象,从感性上升到理性的认识过程。

三、学法指导

让学生学会观察、比较、分析、归纳,学会从具体的实例中抽象出一般规律。从中提高他们的概括能力和语言能力,并养成动手、动脑、动口的良好的学习习惯。

中学数学教学设计的模板及笔记(精选篇5)

一、学情分析

本节课是在学生已学知识的基础上进行展开学习的,也是对以前所学知识的巩固和发展,但对学生的知识准备情况来看,学生对相关基础知识掌握情况是很好,所以在复习时要及时对学生相关知识进行提问,然后开展对本节课的巩固性复习。而本节课学生会遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算。

二、考纲要求 

1.会用坐标表示平面向量的加法、减法与数乘运算. 

2.理解用坐标表示的平面向量共线的条件.

3.掌握数量积的坐标表达式,会进行平面向量数量积的运算. 

4.能用坐标表示两个向量的夹角,理解用坐标表示的平面向量垂直的条件.

三、教学过程

(一) 知识梳理:

1.向量坐标的求法

(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标.

(2)设A(x1,y1),B(x2,y2),则

=_________________

| |=_______________

(二)平面向量坐标运算

1.向量加法、减法、数乘向量

设 =(x1,y1), =(x2,y2),则

+ = - = λ = .

2.向量平行的坐标表示

设 =(x1,y1), =(x2,y2),则 ∥ ⇔________________.

(三)核心考点·习题演练

考点1.平面向量的坐标运算

例1.已知A(-2,4),B(3,-1),C(-3,-4).设 (1)求3 + -3 ;

(2)求满足 =m +n 的实数m,n;

练:(江苏,6)已知向量 =(2,1), =(1,-2),若m +n =(9,-8)

(m,n∈R),则m-n的值为     .

考点2平面向量共线的坐标表示

例2:平面内给定三个向量 =(3,2), =(-1,2), =(4,1)

若( +k )∥(2 - ),求实数k的值;

练:(,四川,4)已知向量 =(1,2), =(1,0), =(3,4).若λ为实数,( +λ )∥ ,则λ= (  )

思考:向量共线有哪几种表示形式?两向量共线的充要条件有哪些作用?

方法总结:

1.向量共线的两种表示形式

设a=(x1,y1),b=(x2,y2),①a∥b⇒a=λb(b≠0);②a∥b⇔x1y2-x2y1=0.至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.

2.两向量共线的充要条件的作用

判断两向量是否共线(平行的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值.

考点3平面向量数量积的坐标运算

例3“已知正方形ABCD的边长为1,点E是AB边上的动点,

则 的值为     ; 的值为     .

【提示】解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.

练:(,安徽,13)设 =(1,2), =(1,1), = +k .若 ⊥ ,则实数k的值等于(  )

【思考】两非零向量 ⊥ 的充要条件: · =0⇔     .

解题心得:

(1)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.

(2)解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.

(3)两非零向量a⊥b的充要条件:a·b=0⇔x1x2+y1y2=0.

考点4:平面向量模的坐标表示

例4:(湖南,理8)已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则 的值为(  )

A.6 B.7 C.8 D.9

练:(,上海,12)

在平面直角坐标系中,已知A(1,0),B(0,-1),P是曲线上一个动点,则 的取值范围是?

解题心得:

求向量的模的方法:

(1)公式法,利用|a|= 及(a±b)2=|a|2±2a·b+|b|2,把向量的模的运算转化为数量积运算;

(2)几何法,利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解..

    701949