5068教学资源网 > 学习宝典 > 数学 > 数学课件 > 五年级 > 小学数学五年级下册课件怎么写

小学数学五年级下册课件怎么写

开鹏0分享

小学数学五年级下册课件怎么写5篇

五年级数学教案很有意思。教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,下面小编给大家带来关于小学数学五年级下册课件怎么写,希望会对大家的工作与学习有所帮助。

小学数学五年级下册课件怎么写

小学数学五年级下册课件怎么写(篇1)

一、教学内容

1.因数和倍数

2.2、5、3的倍数的特征

3.质数和合数

二、教学目标

1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。

2.使学生通过自主探索,掌握2、5、3的倍数的特征。

3.逐步培养学生的数学抽象能力。

三、编排特点

1.精简概念,减轻学生记忆负担。

三方面的调整:

A.不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。

B.不再正式教学“分解质因数”,只作为阅读性材料进行介绍。

C.公因数、公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。

2.注意体现数学的抽象性。

数论知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。

四、具体编排

1.因数和倍数

因数和倍数的概念

过去:用÷=表示能被整除,÷=表示能被整除。

现在:用=直接引出因数和倍数的概念。

(1)用2×6=12给出因数和倍数的概念。

(2)用3×4=12进一步巩固上述概念。

(3)让学生利用因数和倍数的概念自主发现12的其他因数。

(4)可引导学生利用一般的乘法算式×=归纳出因数和倍数的概念。

(5)说明本单元的研究范围。

注意以下几点:

(1)虽然不出现“整除”一词,但本质上仍是以整除为基础,因此,乘法算式中的乘数和积都必须是整数。

(2)因数和倍数是一对相互依存的概念,不能单独存在。

(3)注意区分乘法各部分名称中的“因数”和本单元中的“因数”的联系和区别。

(4)注意区分“倍数”与前面学过的“倍”的联系与区别。

例1(一个数的因数的求法)

(1)可用不同的方法求出18的因数(列出积是18的乘法算式或列出被除数是18的除法算式),但应引导学生有序思考。

(2)用集合圈表示因数,为后面求两个数的公因数作铺垫。

一个数的因数的特点

(1)因数是其自身,最小因数是1。

(2)因数个数有限。

(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。

例2(一个数的倍数的求法)

(1)求法:用该数乘任一非0自然数所得的积都是该数的倍数。

(2)用集合圈表示倍数,为后面求两个数的公倍数作铺垫。

做一做

与例1结合起来,提供了2、3、5的倍数,为后面探讨2、3、5倍数的特征作准备。

一个数的倍数的特点

(1)最小倍数是其自身,没有的倍数。

(2)因数个数无限。

(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。

2.2、5、3的倍数的特征

因为2、5的倍数的特征在个位数上就体现出来了,而3的倍数涉及到各数位上的数字之和,较为复杂,因此后安排3的倍数的特征。本部分内容对于熟练掌握约分、通分、分数的四则运算有很重要的作用。

2的倍数的特征

(1)从生活情境“双号”引入。

(2)观察2的倍数的个位数,总结出2的倍数的特征。

(3)介绍奇数和偶数的概念。

(4)可让学生随意找一些数进行验证,但不要求严格的证明。

5的倍数的特征

(1)编排方式与2的倍数的特征类似。

(2)可进一步总结既是2的倍数又是5的倍数的特征,即10的倍数的特征。

3的倍数的特征

(1)强调自主探索,让学生经历观察――猜想――__猜想――再观察――再猜想――验证的过程。

(2)可任意选择一个数,用正面、反面的例子对结论进一步验证。

(3)也可对任一3的倍数的各位数调换位置,更深刻地理解3的倍数的特征。

3.质数和合数

质数和合数的概念

(1)根据20以内各数的因数个数把数分成三类:1、质数、合数。

(2)可任出一个数,让学生根据概念判断其为质数还是合数。

例1(找100以内的质数)

(1)方法多样。可以根据质数的概念逐个判断,也可用筛法。

(2)把握教学要求:知道100以内的质数,熟悉20以内的质数。

五、教学建议

1.加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。

从因数和倍数的含义去理解其他的相关概念。

2.要注意培养学生的抽象思维能力。

小学数学五年级下册课件怎么写(篇2)

教学内容:

义务教育课程标准小学数学五年级下册第二章《因数和倍数》第1节例1(教材第13页)及练习二的第2题,第四题的前部分。

教材分析:

本节教学是在学生学习掌握了因数和倍数两个概念的基础上,在教师的引导下,让学生运用乘法算式及除法中的整除自主尝试、探究“求一个数的因数”的方法。同时,通过多种形式的训练,使学生能熟练找全一个数的因数。另外,通过引导学生用集合的形式表示一个数的因数,一方面给学生渗透集合思想,更重要的是为后面教学求两个数的公因数做准备。

教学目标:

1、应用尝试教学法鼓励学生自主尝试探究求一个数的因数的方法及规律特点,并能熟练找全一个数的因数;

2、逐步培养学生从个别到全体、从具体到一般的抽象归纳的思想方法。

教学重点:

探究求一个数的因数的方法及规律特点。

教学难点:

用求一个数的因数的方法熟练找全一个数的因数。

教具准备:

投影仪、小黑板、卡片

教学课时:一课时

教学设想:

运用尝试教学法,从学生已有的知识经验出发,通过教师引导、学生自学例1,自主尝试、探究求一个数的因数的方法方法,并能运用所获得的方法、经验找全一个数的因数。

教学过程:

一、复习旧知

师:同学们,前面学习了因数和倍数的概念,老师很想考考你们学得怎么样,可以吗?

生:(预设)可以!

师:出示小黑板。

1、利用因数和倍数的相互依存关系说一说下面各组数的相互关系。

21和7,2×7=14,30÷6=5

2、判断。

(1)12是倍数,2是因数。()

(2)1是14的因数,14是1的倍数。()

(3)因为6×0.5=3,所以,6和0.5是3的因数,3是6和0.5的倍数。()

教师根据学生完成练习的情况对学生进行恰当的表扬激励,同时进入新课教学:……

二、新课教学

过程一:尝试训练。

(一)出示问题

师:同学们,老师有一个新问题,想请大家帮助解决,行吗?

生:行!(预设)

尝试题:14的因数有哪几个?

(二)学生解决问题,教师巡视并根据实际适时辅导学困生。

(三)信息反馈。

板书:

1×14

14,2×7

14÷2

14的因数有:1,2,7,14

过程二:自学课本(P13例1)。

(一)学生自学例1。

教师提出自学要求(投影):

1、18有哪些因数?

2、文中的小朋友是怎样找出18的因数的?他们找完了吗?如果没有,请帮助他们完成。

3、你还有别的找法吗?请试一试,并用自己喜欢的方式写出18所有的因数。

(二)信息反馈

1、反馈自学要求情况;

板书:

1×18

182×9

3×6

18的因数有1,2,3,6,9,18。

还可以这样表示:18的因数

2、知识对比,探索发现规律。

(1)师:同学们,根据求14和18的因数时获得的体验,再思考下面问题:

投影出示问题:

思考一:你用什么方法找出?

(2)学生思考,教师适时引导。

(3)同桌交流思考结果。

(4)师生互动。总结方法、点出课题。

求一个数的因数的方法:用乘法计算或除法计算(整除)

过程三:尝试练习

(一)用小黑板出示练习题

1、找出30的因数有哪些?36的因数有哪些?

2、结合14、18、30、36的因数个数,请你谈谈一个数的因数有什么特点?〖提示:一个数的最小因数是(),的因数是()。〗

(二)信息反馈:师生互动总结特点。

板书:

一个数的因数的个数是有限的。它的最小因数是1,的因数是它本身。

三、课堂作业

练习二第2题和第4题前半部分。

四、课堂延伸

猜一猜:(卡片)只有一个因数的数是谁?

五、课堂小结

师:今天你学会了求一个数的因数的方法吗?你知道一个数的因数特点吗?

生:……

板书设计:

求一个数的因数的方法

1×14

142×7方法:用乘法计算或除法计算(整除)

14÷2

14的因数有:1,2,7,14

1×18

182×9

3×6

18的因数有:1,2,3,6,9,18特点:一个数的因数的个数是有限的。

还可以表示为:

它的最小因数是1,的因数是它本身。

小学数学五年级下册课件怎么写(篇3)

教学目标:

1、知道求组合图形的面积就是求几个图形面积的和(或差);能正确地进行组合图形面积计算,并能灵活思考解决实际问题。

2、注重对组合图形的分析方法与计算技巧,有利于提高学生的识图能力、分析综合能力与空间想象能力。

教学方法:

讲解法、演示法

教学过程:

一、割补法

这类方法一般是从组合图形中分割成几种不同的基本图形,这类图形的阴影部分面积就是求几个基本图形面积之和(或者差)。

Ppt演示变化过程,并出示解题过程。

二、等积变形法。

这类方法是将题中的条件或问题替换成面积相等的另外的条件或问题,使原来复杂的图形变为简单明了的图形。

Ppt演示变化过程,并出示解题过程。

三、旋转法。

这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图。

Ppt演示变化过程,并出示解题过程。

四、小结方法

求组合图形面积可按以下步骤进行

1、弄清组合图形所求的是哪些部分的面积。

2、根据图中条件联想各种简单图形的特征,看组合图形可以分成几块什么样的图形,能否通过割补、等积变形、旋转等方法使图形化繁为简。

小学数学五年级下册课件怎么写(篇4)

教学内容:

《义务教育课程标准实验教科书数学》(人教版)五年级上册“组合图形的面积”

教学目标:

1、明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。

2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

3、渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。

教学重点:

在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。

教学难点:

根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。

教学准备:

课件、图片等。

教学过程:

一、创设情境,引导探索

师:大家搜集了许多有关生活中的组合图形的图片,谁来给大家展示并汇报一下。(指名回答)

生1:这枝铅笔的面是由一个长方形和一个三角形组成的。

生2:这条小鱼的面是由两个三角形组成的。……

师:同桌的同学互相看一看,说一说,你们搜集的组合图形分别是由哪些图形组成的?

【设计意图:根据学生已有的知识经验和生活经验,让学生在课前进行搜集生活中的组合图形的图片,学生热情高涨、兴趣盎然。通过学生查、拼、摆、画、剪、找等活动,使学生在头脑中对组合图形产生感性认识。】

二、探索活动,寻求新知

师:生活中有许多组合图形,老师准备了3幅,大家观察一下,这些组合组图形是由哪些简单图形组成的?如果求它们的面积可以怎样求?

图一图二图三课件逐一出示图一、图二、图三,让学生发表意见。

生1:小房子的表面是由一个三角形和一个正方形组成的。

生2:风筝的面是由四个小三角形组成的。

生3:队旗的面是由一个梯形和一个三角形组成的。……

师:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形?生1:由两个或两个以上的图形组成的是组合图形。

生2:有几个平面图形组成的图形是组合图形。……

师小结:组合图形是由几个简单的图形组合而成的。

图一:是由三角形、长方形、加上长方形中间的正方形组成的,

面积=三角形面积+长方形面积-正方形面积

图二:是由两个三角形组成的。

面积=三角形面积+三角形面积

图三:作辅助线使它分成一个大梯形和一个三角形。

方法一:是由两个梯形组成的。

师:为什么要分成两个梯形?怎样分成两个梯形?

引导学生说出将它转化成以学过的简单图形以及在图中作辅助线。

师:是的,可以用作辅助线的方法将它转化成以前学过的简单图形来计

(板书:转化)。大家想想,用辅助线的方法还有不同的作法吗?

方法二:作辅助线补成一个长方形,使它变成一个大长方形减去一个三角形。

方法三:作辅助线使它分成一个大梯形和一个三角形。

(课件分别演示这三种方法)

分割法添补法

师:数学中我们习惯用分割法或添补法,用辅助线来把一个复杂的组合图形转

变成比较简单的图形,为计算带来简便。画辅助线时要注意画虚线,以及用铅笔和直尺作图。

板书:分割法或添补法(转化):分解成简单图形。

师:请你找一找生活中哪些地方的表面有组合图形呢?(学生自由回答,对学生们正确的回答要给予好的评价,特别是要鼓励不爱举手的学生讲一讲。注意座在后排的学生表现)

师:同学们认识组合图形了,那么大家还想了解有关组合图形的哪些知识?生1:我想了解组合图形的周长。

生2:我想知道组合图形的面积怎样计算。……

这节课我们重点学习组合图形的面积。

【设计意图:“方法是数学的行为、思想是数学的灵魂”,既然它们是由几个简单图形组合而成的,那么分解它们的组成,就可以来个“原路返回”——分解成几个简单图形的和或差。培养学生灵活的分析问题解决问题的能力,帮助学生独立分析问题。潜意识的教学思想中既重“方法”又重“思想”。体现数学知识从“行为”到“灵魂”的内化过程。同时形成强烈的求知欲。】

三、探讨例题,学习新知

师:同学们的表现真了不起。老师家这几天装修房子,要刷新墙体。刷新墙体的工人工资是平方米来计算的,请你们帮我算一算。(课件出示例4)

例4:右图表示的是一间房子侧面墙的形状。它的面积是多少平方米?

师:怎样才能计算出这个组合图形的面积呢?

先让学生思考,再动手计算。

交流汇报

方法一:把这个组合图形一分为二,一个是正方形,另一个是三角再分别算出正方形和三角形的面积,最后算出它们的面积和,就可以求出这个图形的面积。

师:这是一个不错的想法。要算每个简单图形的面积分别需要哪些条件?请找一找,并标出来。

指名学生找相应的条件。

在实物投影仪上展出示学生的答案

①5×5=25(平方米)

②5×2÷2=5(平方米)

③25+5=30(平方米)

答:房子侧面墙的面积是30平方米。

(注意检查做错的同学,找出错的原因。)

师:除了这种方法,还有同学用别的方法吗?

方法二:先把这个图形补上两个三角形,看作一个长方形,先算出长方的面积后,再减去两个小三角形的面积。

师:能找出每个简单图形的已知条件吗?让学生找相应的条件。展示学生答案

长方形:长:5+2=7米、宽:5米;三角形:底是2米,高是2.5米。5×(5+2)-2.5×2÷2×2

=35-5=30(平方米)

答:房子侧面墙的面积是30平方米。

方法三:把这个图形从顶点向下作一条垂线,就分成两个梯形,这两个梯形面积是相等的,所以只要求出一个梯形的面积再乘以2,就得到这个组合图形的面积。同样让学生找出计算梯形面积的相应已知条件。

展示学生的答案

(5+7)×2.5÷2×2=30(平方米)答:房子侧面墙的面积是30平方米。

让学生发表意见。

小结:使用了分割法或添补法,作辅助线把组合图形转化成简单图形来计算面积。(也就是先把组合图形分解成已经学过的图形,然后分别求出它们的面积再相加。)

师:非常感谢大家为我解决了难题,在日常生活中,到处都有组合图形,我们计算面积时,根据“图形位移,面积不变”的道理,用辅助线把它进行割、补、拼转化成简单的图形,再计算出该组合图形的面积就方便多了,这些方法中有的简单,有的繁琐,如果没有要求多种方法的,我们尽量选择最简单的方法来计算。

【设计意图:对于例题的教学,由于学生有了新课开始的拼组基础,每个学生

对求它的面积会有一定的思考,把自己所知道的方法在小组内说一说,通过四人小组一起来分一分、算一算,给学生充足的探索时间和机会,让学生进一步理解和掌握组合图形的计算方法,并引导学生寻找最简方法,实现方法的化。培养学生小组合作能力、空间想象能力,从而提高学生解决的能力。能充分利用刚学的学习方法解决实际问题。】

四、利用新知,解决生活中的问题。

做一做

刚才同学们帮老师算了刷新墙的面积,客厅大概是下图这种形状。准备铺上地板砖,大家能帮老师计算一下客厅的总面积吗?小组合作,讨论完成,教师参与小组活动。

方法一:把组合图形分割成两个长方形。4×3+3×7=12+21=33(cm2)

方法二:分割成一个长方形和一个正方形。4×6+3×3=24+9=33(cm2)

第三种方法:分割成两个梯形。(3+7)×3÷2+(3+6)×4

7×6-3×3=42-9=33(cm2)

让学生说一说试用了什么方法?前三种使用了分割法,最后一种使用了添补法。

练习过程如上,分解图形如下。同学们真了不起,老师很感谢大家。2、孩子们利用今天所学的知识,做个助人为乐的学生,好吗?

现在你能帮工人叔叔算算这

个指示路牌的面积吗?

【设计意图:1、开放式练习,把枯燥无味的面积计算,溶入到丰富多彩的数学活动中,让学生知道数学与生活的密切联系,利用数学知识解决生活中的实际问题,同时对学生进行德育教育。2、前边的练习后进生可能出现错误,有失败感。自己选择习题,可能选到自己会做的,从而能体会一些成功。对于优生,可能不满足前边练习的深度,自主选择较深的题目,能拓展新知。】

五、课堂评价

师:这节课你学到了什么?

结束语:同学们在这节课表现非常出色!计算组合图形的面积,一般是把它们分割或添补成我们学过的简单图形,如长方形、正方形、三角形、梯形、平行四边形等,要注意根据已知条件分或补,再计算它们的面积。

【设计意图:以板书来表现,学生通过试做汇报、交流观察。体现了重视学生的思维过程,将思维过程充分的暴露出来,体现了算法多样性,为学生提供了充分的参与空间;体现了对学生思维能力的培养,发展了学生的空间观念,提高了学生解决问题的能力。】

课堂检测A

1、这是我们学校将要开辟的一块草坪,如下图。由哪些简单图形组成的?你能算出它的面积吗?

现在有两家公司联系,A公司说种一平方米草要5元,B公司说种同样的草一共需要

2500元。如果让你决定,你会选择哪家公司?

2、同学们,我们学校少先大队准备给每个班做一面“中队旗”,不知道该用多少布,想请大家帮忙,你们愿意吗?我们已经知道“中队旗”也是一个组合图形,现在请同学们根据图中提供的数据,选择自己喜欢的方法计算出用布的面积。我们比一比谁的方法更新颖、更快捷!

课堂检测B

1、在一块梯形的地中间有一个长方形的游泳池,其余的地方是草地。草地的面积是多少平方米?

想种上红花、黄花和绿草。一种设计方案如图。你能分别算出红花、黄花、绿草的种植面积吗?

答案:课堂检测A

1、50×33+35×12÷2

=1650+210

=1860(厘米)

2、33×26-26×13÷2

=758+169

=927(厘米)

课堂检测B

1、(40+70)×30÷2-30×15

=1650-450

=1200(厘米)

2、长方形地的面积:18×12=216(平方米)绿草面积(一半):216÷2=158(平方米)黄花面积:216÷4=58(平方米)红花面积:216÷4=58(平方米)

小学数学五年级下册课件怎么写(篇5)

教学目标:

知识与技能:通过活动,使学生能熟练地应用面积计算公式,灵活运用不同的方法解决铺地砖一类的实际问题。

过程与方法:在讨论、交流、猜测、分析和整理的过程中,理解数学问题的提出和数学知识的应用,形成初步探索和解决简单的实际问题的能力。

情感态度与价值观:培养学生应用数学的意识和创新精神,培养学生观察、思考以及与同伴交流的良好习惯。并在实践中对学生进行美育渗透。

教学重点:

学习应用综合知识解决实际问题。

教学难点:

合理运用解决问题的策略。

教学过程:

一、情境引入

老师最近买了一套房子,准备装修。在装修的过程中遇到了一些问题,我在建材市场一眼就看中了一块50cm×50cm规格的地板砖,我跟卖地砖的老板说,想用这样的地砖铺卧室,老板问:你们家卧室多大,我说大约20平方米,老板想了片刻,马上就报出了需要多少块地砖,大约需要多少钱,我很惊讶,问老板你怎么算得这么快?老板说,他是这么想的„„同学们你们想想,老板是如何计算的?

我们就一起来给老师家的卧室铺地砖(板书课题)-------铺地砖

二、自主探究

1、出示情景图:老师家的卧室的长是5米,宽是4米。

现有两种规格的地砖:第一种:40cm×40cm,每块5元;第二种:50cm×50cm,每块8元

在铺之前,老师想请同学们先来估算一下,这两种地砖各需要多少块?

师:谁能来估算一下呢?

生:(125块)你是怎么估出来的?(一平方米大约能铺5块,客厅20平方米,所以能铺100块)那第二种地砖呢?(大约80块)

说的很好,那大家估的准不准呢?我们就来实际计算一下,在计算之前我们先来讨论一下用什么方法来计算需要多少块地砖?请同学们小组讨论一下。如果遇到困难可以看一下书中93页的内容。

生1、(可以用客厅的面积除以一块地砖的面积,可以看长能铺多少块,宽能铺多少块再乘起来,也可以用方程来解答)

生2、看1平方米能能铺多少块,再看有多少米。

生3、用方程解,设,能铺x块这样的地砖。

师:在计算前,你觉得解决这个问题应注意什么?

生:要注意单位的换算。

师:说得好,现在我们就带着注意事项,选择你认为适合的解答方法来计算一下第一种地砖要多少块?多少钱?(学生先独立完成,老师巡视,然后交流)

交流时让学生说说是用什么方法计算的,结果是多少?(教师板书)主要看看学生都采用什么方法来计算的。把学生做的拿来投影。比较三种做法,比较喜欢哪一种方法。那就让我们用自己比较喜欢的方法来计算一下第二种地砖要多少块?多少钱?

在交流方形砖时,用客厅的面积除以一块砖的面积的结果不是整数,让学生明确这时要利用进一法来取近似值,而这道题用另一种方法的结果还不同,让学生来分析一下为什么会出现这样的结果,这时利用课件演示两种情况,用客厅面积除以一块砖的面积来计算比较节约,而利用长铺几块,宽铺几块再乘起来的方法计算比较美观。

在日常生活中我们铺地砖的时候是以美观为主的,这种方法比较符合实际,不会出现一些切得太碎的地砖拼凑在一起的情况。

现在我们把两种地砖所需的块数和金额都计算出来了,那么我们来看一下选哪种地砖比较合适?(第一种,既便宜又美观)

三、巩固练习

1、图书室的面积是85平方米,用边长为0.9米的正方形瓷砖铺地。105块够吗?

2、李林家准备给客厅铺地砖,如果用边长为40cm的正方形地砖,需要300块;如果用边长为50cm的正方形地砖,需要多少块?

四、总结

这节课我们一起给老师家的客厅铺地砖(用手指着课题)老师得到了大家的帮助,已经想好了该买哪一种地砖,同学们今天表现不错,那同学们今天又有什么收获和感受呢?和同学们一起分享一下。

板书设计:

铺地砖

客厅的面积÷一块砖的面积

方程:一块地砖的面积×块数=客厅的面积

长铺的块数×宽铺的块数

(解题过程,三种方法的算式)

5×4÷(0.5×0.5)

0.5×0.5×X=5×4

(5÷0.5)×(4÷0.5)

六、作业安排

完成书P93“试一试”

    719331