5068教学资源网 > 学习宝典 > 数学 > 数学教案 > 八年级 > 八年级下册数学教学教案

八年级下册数学教学教案

开鹏0分享

八年级下册数学教学教案模板8篇

八年级数学教案很有意思。教案的作用有很多,作为新的老师教案的重要性是不容小觑的, 随着教案的完成,对于教材和知识点的把握更有力度,更有利于将来的讲课。下面小编给大家带来关于八年级下册数学教学教案,希望会对大家的工作与学习有所帮助。

八年级下册数学教学教案

八年级下册数学教学教案精选篇1

教学目标

1.等腰三角形的概念.  2.等腰三角形的性质. 3.等腰三角形的概念及性质的应用.

教学重点: 1.等腰三角形的概念及性质.  2.等腰三角形性质的应用.

教学难点:等腰三角形三线合一的性质的理解及其应用.

教学过程

Ⅰ.提出问题,创设情境

在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?

有的三角形是轴对称图形,有的三角形不是.

问题:那什么样的三角形是轴对称图形?

满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.

我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.

Ⅱ.导入新课:  要求学生通过自己的思考来做一个等腰三角形.

作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.

等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.

思考:

1.等腰三角形是轴对称图形吗?请找出它的对称轴.

2.等腰三角形的两底角有什么关系?

3.顶角的平分线所在的直线是等腰三角形的对称轴吗?

4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?

结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.

要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.

沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.

由此可以得到等腰三角形的性质:

1.等腰三角形的两个底角相等(简写成“等边对等角”).

2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).

由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).

如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为

所以△BAD≌△CAD(SSS).

所以∠B=∠C.

]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为

所以△BAD≌△CAD.

所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.

[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,

求:△ABC各角的度数.

分析:根据等边对等角的性质,我们可以得到

∠A=∠ABD,∠ABC=∠C=∠BDC,

再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

再由三角形内角和为180°,就可求出△ABC的三个内角.

把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.

解:因为AB=AC,BD=BC=AD,

所以∠ABC=∠C=∠BDC.

∠A=∠ABD(等边对等角).

设∠A=x,则  ∠BDC=∠A+∠ABD=2x,

从而∠ABC=∠C=∠BDC=2x.

于是在△ABC中,有

∠A+∠ABC+∠C=x+2x+2x=180°,

解得x=36°.    在△ABC中,∠A=35°,∠ABC=∠C=72°.

[师]下面我们通过练习来巩固这节课所学的知识.

Ⅲ.随堂练习:1.课本P51练习 1、2、3.  2.阅读课本P49~P51,然后小结.

Ⅳ.课时小结

这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.

我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.

Ⅴ.作业: 课本P56习题12.3第1、2、3、4题.

板书设计

12.3.1.1  等腰三角形

一、设计方案作出一个等腰三角形

二、等腰三角形性质: 1.等边对等角      2.三线合一

12.3.1.1  

八年级下册数学教学教案精选篇2

教学目标

1、 理解并掌握等腰三角形的判定定理及推论

2、 能利用其性质与判定证明线段或角的相等关系.

教学重点:  等腰三角形的判定定理及推论的运用

教学难点:  正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系.

教学过程:

一、复习等腰三角形的性质

二、新授:

I提出问题,创设情境

出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度.

学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”.

II引入新课

1.由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB= AC吗?

作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?

2.引导学生根据图形,写出已知、求证.

2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).

强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”.

4.引导学生说出引例中地质专家的测量方法的根据.

III例题与练习

1.如图2

其中△ABC是等腰三角形的是 [       ]

2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?).

②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).

③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.

④若已知 AD=4cm,则BC______cm.

3.以问题形式引出推论l______.

4.以问题形式引出推论2______.

例: 如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.

分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.

练习:5.(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?

(2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?

练习:P53练习1、2、3。

IV课堂小结

1.判定一个三角形是等腰三角形有几种方法?

2.判定一个三角形是等边三角形有几种方法?

3.等腰三角形的性质定理与判定定理有何关系?

4.现在证明线段相等问题,一般应从几方面考虑?

V布置作业:P56页习题12.3第5、6题

八年级下册数学教学教案精选篇3

教学目的

1. 使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。

2. 熟识等边三角形的性质及判定.

2.通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。

教学重点:  等腰三角形的性质及其应用。

教学难点:  简洁的逻辑推理。

教学过程

一、复习巩固

1.叙述等腰三角形的性质,它是怎么得到的?

等腰三角形的两个底角相等,也可以简称“等边对等角”。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点 C重合,线段BD与CD也重合,所以∠B=∠C。

等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称“三线合一”。由于AD为等腰三角形的对称轴,所以BD= CD,AD为底边上的中线;∠BAD=∠CAD,AD为顶角平分线,∠ADB=∠ADC=90°,AD又为底边上的高,因此“三线合一”。

2.若等腰三角形的两边长为3和4,则其周长为多少?  

二、新课

在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。

等边三角形具有什么性质呢?

1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。

2.你能否用已知的知识,通过推理得到你的猜想是正确的?

等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到∠A=∠B=C,又由∠A+∠B+∠C=180°,从而推出∠A=∠B=∠C=60°。

3.上面的条件和结论如何叙述?

等边三角形的各角都相等,并且每一个角都等于60°。

等边三角形是轴对称图形吗?如果是,有几条对称轴?

等边三角形也称为正三角形。

例1.在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数。

分析:由AB=AC,D为BC的中点,可知AB为 BC底边上的中线,由“三线合一”可知AD是△ABC的顶角平分线,底边上的高,从而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。

问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样?

问题2:求∠1是否还有其它方法?

三、练习巩固

1.判断下列命题,对的打“√”,错的打“×”。

a.等腰三角形的角平分线,中线和高互相重合(    )

b.有一个角是60°的等腰三角形,其它两个内角也为60°(    )

2.如图(2),在△ABC中,已知AB=AC,AD为∠BAC的平分线,且∠2=25°,求∠ADB和∠B的度数。

3.P54练习1、2。

四、小结

由等腰三角形的性质可以推出等边三角形的各角相等,且都为60°。“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。

五、作业:    1.课本P57第7,9题。

2、补充:如图(3),△ABC是等边三角形,BD、CE是中线,求∠CBD,∠BOE,∠BOC,∠EOD的度数。

八年级下册数学教学教案精选篇4

教学目标

1.掌握等边三角形的性质和判定方法.    2.培养分析问题、解决问题的能力.

教学重点:等边三角形的性质和判定方法.

教学难点:等边三角形性质的应用

教学过程

I创设情境,提出问题

回顾上节课讲过的等边三角形的有关知识

1.等边三角形是轴对称图形,它有三条对称轴.

2.等边三角形每一个角相等,都等于60°

3.三个角都相等的三角形是等边三角形.

4.有一个角是60°的等腰三角形是等边三角形.

其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.

II例题与练习

1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?

①在边AB、AC上分别截取AD=AE.

②作∠ADE=60°,D、E分别在边AB、AC上.

③过边AB上D点作DE∥BC,交边AC于E点.

2. 已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.

分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.

3. P56页练习1、2

III课堂小结:1.等腰三角形和性质;等腰三角形的条件

V布置作业: 1.P58页习题12.3第ll题.

2.已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个?

八年级下册数学教学教案精选篇5

教学过程

一、 复习等腰三角形的判定与性质

二、 新授:

1.等边三角形的性质:三边相等;三角都是60°;三边上的中线、高、角平分线相等

2.等边三角形的判定:

三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形;

在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半

注意:推论1是判定一个三角形为等边三角形的一个重要方法.推论2说明在等腰三角形中,只要有一个角是600,不论这个角是顶角还是底角,就可以判定这个三角形是等边三角形。推论3反映的是直角三角形中边与角之间的关系.

3.由学生解答课本148页的例子;

4.补充:已知如图所示, 在△ABC中,  BD是AC边上的中线, DB⊥BC于B, 

∠ABC=120o, 求证: AB=2BC

分析   由已知条件可得∠ABD=30o, 如能构造有一个锐角是30o的直角三角形, 斜边是AB,30o角所对的边是与BC相等的线段,问题就得到解决了.

八年级下册数学教学教案精选篇6

一、指导思想

教育学生掌握基础知识与基本技能培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括,初中数学教学计划。会用归纳演绎、类比进行简单的推理。

二、学情分析

八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到九年级的毕业和升学。八(2)班人数为50人,七年级下期学生期末考试高分人数9人,及格人数27人,低分6人。八(2)班后进面较大,很多同学基础差,有少数学生不上进,思维闲散,和兄弟班级差距大。要在本期获得理想成绩,老师和学生都要付出艰巨努力,要加强落实,培优辅差,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。

三、主要措施

1、认真做好教学工作。认真研读新课程标准,钻研新教材,根据新课程标准,挖掘整合教材,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习,工作计划《初中数学教学计划》。

2、激发学生的兴趣,兴趣是的老师。给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。

3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。

4、引导学生积极归纳解题规律,引导学生一题多解,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维。

5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

7、开展分层教学,布置作业设置A、B、C三类,分层布置,分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,使他们都等到发展。进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关。

八年级下册数学教学教案精选篇7

一、教学思想:

深入推进和贯彻《初中数学新课程标准》的精神,以学生发展为本,以改变学习方式为目的,以培养高素质的人才为目标,培养学生创新精神和实践能力为重点的素质教育,探索有效教学的新模式。义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题转化为数学问题并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。

二、教学目标:

1、态度与价值观:通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。

2、知识与技能:掌握初中数学教材、数学学科“基本要求”的知识点。

3、过程与方法:通过探索、学习,使学生逐步学会正确、合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。围绕初中数学教材、数学学科“基本要求”进行知识梳理,适时的进行分层教学,面向全体学生、培养全体学生、发展全体学生.

三、教学措施

1、认真学习钻研新课标,掌握教材,编写好“教案”。

2、认真备课,争取充分掌握学生动态。

3、认真上好每一堂课。

创设教学情境,激发学习兴趣,充分用足用好40分钟。爱因斯曾经说过:“兴趣是的老师。”激发学生的学习兴趣,是数学教学过程中提高质量的重要手段之一。结合教学内容,选一些与实际联系紧密的数学问题让学生去解决,教学组织合理,教学内容语言生动。相尽各种办法让学生爱听、乐听,以全面提高课堂教学质量。

4、落实每一堂课后辅助,查漏补缺。

全面关心学生,这是老师的神圣职责,在课后能对学进行针对性的辅导,解答学生在理解教材与具体解题中的困难,指导课外阅读因材施教,使优生尽可能“吃饱”,获得进一步提高;使差生也能及时扫除学习障碍,增强学习信心,尽可能“吃得了”。充分调动学生学习数学的积极性,扩大他们的知识视野,发展智力水平,提高分析问题与解决问题的能力。

5、积极与其它老师沟通,加强教研教改,提高教学水平。

6、经常听取学生良好的合理化建议。

7、深化两极生的训导。

8、落实帮教措施。

总之通过做好教学工作的每一环节,尽的努力,想出各种有效的办法,以提高教学质量。

八年级下册数学教学教案精选篇8

一、教学思想:

引导学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源于实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。

二、学生基本情况分析:

学生在八年级下期,已经开始出现了两极分化了,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,学生仍然缺少大量的推理题训练,推理的思考方法与写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻。在学习能力上,学生课外主动获取知识的能力较差,为减轻学生的经济负担与课业负担,不提倡学生买教辅参考书,学生自主拓展知识面,向深处学习知识的能力没有得到培养。在以后的教学中,必须突出学生的主体性,大力士培养学生课外主动获取知识的能力。学生的逻辑推理、逻辑思维能力,计算能力需要得到加强,以提升学生的整体成绩,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去,少数几个学生对数学处于一种放弃的心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这一少数学生也成为老师的重点牵挂对象,课堂家庭作业,学生完成的质量要打折扣;学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正(、作业后)错误的习惯,比较多的学生不具有,需要教师的督促才能做,陶行知说:就是培养习惯,这是本期教学中重点予以关注的。

三、教材分析:

《义务课程标准实验教科书·数学》九年级上册包括二次根式、一元二次方程、旋转、圆、概率初步五章内容,学习内容涉及到了《全日制义务数学课程标准(实验稿)》(以下简称《课程标准》)的四个领域“数与代数”“空间与图形”“统计与概率”“课题学习”。

注重探索结论:

本书各章都注意揭示得出结论的过程,加深学生对相关结论的理解,提高学生分析问题、解决问题的能力。

在“二次根式”一章,让学生根据平方根的意义填空,进而得出≥0)以及(≥0)的结论。让学生通过特殊数值的计算体会二次根式的乘除法则规定的合理性。

在“一元二次方程”一章,让学生思考各种类型的一元二次方程如何用配方法得解,讨论如何配方。通过设置探究栏目加大了让学生探究解决实际问题的力度。此外,本章中的选学内容“观察与猜想发现一元二次方程根与系数的关系”也是强调结论的探索过程。

在“旋转”一章,旋转的性质,中心对称的性质,在平面直角坐标系中,如果两个点关于原点对称,那么这两个点的坐标有什么关系,这些内容都是让学生进行探究的。此外,本章还安排了许多探索和发现图形之间的变换关系的问题。

在“圆”一章,结论较多,也注意体现了结论的探索过程。例如结合圆的轴对称性,发现垂径定理及其推论;利用圆的旋转发现圆中弧、弦、圆心角之间的关系;通过度量,发现圆心角与圆周角的数量关系;利用直观操作,发现点与圆、直线与圆、圆与圆之间的位置关系等等。

    719399